= REX
= Reference
VM/370 ¢ CMS Summary

First Edition (November 1980) - for REX version 2.08

CONTENTS
REXCEXEC 5 5% s oo e B e 4 fotds 5 s 08 ol s o, 506 5k s 8 1
Dataitemss s S tainiedn e il g 80 e 10 Gt SRR b e 2
EXDEESSIONS o s O 5, Ll e b o s R Bl i e 2
AR OINIEIIS . S v i o s DRl s it oo 0 il L 5 i e, 58 3
FEOPREe SO0 PG . - e o b 55 e B e e 5
Compound variable NBMES. . . s s oo oss v d b s S s A 5
R R B P DI P 5
Issuing commandsto CMS. 5
Interactive DEDUGAING . iy o0 sis & wis s s ionssarm ot s o mre oo s 6
REXFNS function package.. 6
REXFNS2 funclion package i c oo« v siis sms swamn 5 7
REXWORDS function package. 7l
Uity MOAUIES: & .o hvor i, iy bessimal o, s fo 6 ast B0 o valoing s o 7003 Jads 7
RESEHCHONS = o o e o s S hr i B st £ s 5, s i U 8
The Command and Exec Plist. 8
SAMPE REN BXEE. . .. i v vos s5h G st s i w b sms it 9

REX is a command programming language which allows you
to combine useful sequences of commands to create new com-
mands. It is used in conjunction with, or as a replacement for,
the CMS EXEC and EXEC 2 languages. REX is especially
suitable for writing Execs or editor macros, but is also a useful
tool for algorithm development.

REX EXEC
Invoke using: REX [parameter]

REX ? describes REX EXEC and how to use the
on-line help and tutorial.

installs REX in your CMS system under the
name EXEC so that you may execute Execs
written in any of the three languages. You
probably will want to put ‘EXEC REX I’ in
your PROFILE EXEC.

REX enters the on-line help, viewing an index of
topics.

(where nn is a REX error message number)
describes the meaning of the error message
and the likely cause of the error.

(where kkk is a REX keyword) gives imme-
diate information on the specified topic.

REX |

REX 200nn

REX kkk

Key to notation used on this card:
GOTHIC — indicates language keywords

italics — indicate defined syntactic units

[l — brackets indicate an optional item

. — ellipses mean multiple items are allowed

{} — braces specify list of alternatives (choose one)

| — separates alternatives in a list

IBM INTERNAL USE ONLY

e ——

@
DATA ITEMS

The REX language is designed for the easy manipulation of
character strings. Its expressions and instructions manipulate
the following items:
string A string is a quoted string of characters.
Use two quotes to obtain one quote inside
the string. The string may be specified in
hexadecimal if the final quote is followed
by an X. Some valid strings are: "Next"
‘Don''t touch' 'lde8'x

A number is a string of up to 9 decimal
digits before and/or after an [optional]
decimal point. It may have a leading sign.
Some valid numbers are: 17 98.07 .101

A name refers to a variable, which can be
assigned any value. It may consist of up to
150 characters from the following selection:
A-Z, a-z,0-9, @2 $3¢ .21 ¢

The first character may not be a digit or
period, except if the name consists of the
period alone. The name is translated to up-
per case before use, and forms the initial
value of the variable. Some valid names
are: Fred COST? next_index A,

A function-call invokes an external routine
with O to 7 arguments. The called routine
will return a character string. A
function-call has the format:

function-name(Lexpr] [expr]...)
Function-name must be adjacent to the left
parenthesis, and may be a name or a string.

number

function-call

EXPRESSIONS

Most REX statements permit the use of expressions, following
the style of PL/I. Expressions are evaluated from left to right,
modified by the priority of the operators (as ordered below).
Parentheses may be used to change the order of evaluation.
All operations (except prefix operations) act on two items, and
result in a character string.
Prefix + - - Prefix operations: Plus; Minus; and Not.
(For + and -, item must evaluate to a
number, for -, it must be ‘1’ or ‘0’.)
Multiply; Divide; Divide and return the re-
mainder. (Both iftems must evaluate to
numbers.)
s Add; Subtract. (Both items must evaluate to
numbers.)
Concatenate: with or without blank. Abut-
tal of items causes direct concatenation.
= == = >= <= > < > <
Comparisons (arithmetic compare if both
items evaluate to a number). The == opera-
tor checks for an exact match.
& Logical And. (Both items must be ‘0’ or ‘1°.)

| && Logical Or; logical Exclusive Or. (Both items
must be ‘0’ or ‘1°.)

N

(blank) ||

The results of arithmetic operations are expressed to the same
decimal precision as the more precise of the two items. For
example, 123.57 + 12 will result in 135.57. Results of division
are rounded rather than truncated.

IBM INTERNAL USE ONLY

® |

STATEMENTS

REX statements are built out of clauses consisting of a series
of items, operators, etc. The semicolon at the end of each
clause is often not required, being implied by line-ends and
after the keywords THEN, ELSE, or OTHERWISE. A clause may be
continued from one line to the next by using a comma at the
end of the line. This then acts like a blank. Open strings or
comments are not affected by line ends, and do not require a
continuation character.

Keywords are shown in capitals in this list, however they may
appear in either (or mixed) case. Keywords are only reserved
when they are found in the correct context.

In the descriptions below: expr is an expression as described
above; strmt is any one of the listed statements; template is a
parsing template, as described in a later section; name is usual-
ly the name of a variable (see above).

name = [expr]; assignment: the variable name is set to the
value of expr.

expr; the value of expr is issued as a command.

ADDRESS [{namelstring} [exprl]; redirect commands or a
single command to new environment.

parse the argument string into variables.
The contents of all variables except the last
are translated to upper case. (Note: the
first argument is always the name of the
Exec or subroutine.)

CALL name [expr]; call an internal subroutine. On return, the
variable name will have the value from the
RETURN statement. Subroutines may be
called recursively.

DO [name = expri [T0 exprt] [BY exprb]] [{UNTILIWHILE} expr];
[stmt]... END; statement grouping with optional repetition

and condition. The variable name is step-
ped from expri to exprt in steps of exprb.
These exprs are evaluated only once at the
top of the loop and must result in a whole
number. This iterative phrase may be re-
placed by a single expr which is a loop
count (no variable used). If a WHILE or
UNTIL is given, its expr must evaluate to ‘0’
or ‘1’. The condition is tested at the top of
the loop if WHILE or at the bottom if UNTIL.

DROP [name]...; drop (reset) the named, or all, variables.

EXIT [expr]; leave the Exec [with return code].

IF expr {;| THEN} stmt

[ELSEL;] stmt] if expr evaluates to ‘l’, execute the state-

ment following the ‘;’ or THEN. Otherwise

(evaluates to ‘0’) skip that statement and

execute the one following the ELSE clause,

if present.

evaluate expr and then execute the resultant

string as if part of the original program.

start next iteration of innermost repetitive

loop [or loop with control variable name].

terminate innermost loop [or the loop with
control variable name].

NOP; dummy statement, has no side-effects.
PARSE ARGS [zemplate]; ARGS without upper case translation.
PARSE PULL [zemplate]; PULL without upper case translation.

ARGS [zemplate];

INTERPRET expr;
ITERATE [name];

LEAVE [name];

IBM INTERNAL USE ONLY

|

|
i

|

®

PARSE SOURCE [remplate]; parse program source description
‘CMS {COMMAND | FUNCTION} fn ft fm’.

PARSE VAR name [template]; parse the value of name.

PARSE VERSION [zemplate]; parse data describing interpreter.

PROCEDURE; start a new generation of variables within a

subroutine.

read the next string from the system queue

(“stack”) and parse it into variables. The

contents of all variables except the last are

translated to upper case.

push expr onto head of the system queue

(“stack LIFO”).

add expr to the tail of the system queue

(“stack FIFO”).

evaluate expr and return the value to the

caller. (Pushes the value onto the system

queue if not a function or internal call.)

evaluate expr and then display the result on

the user’s console, using current line size.

PULL [template];

PUSH [expr];
QUEUE [expr];

RETURN [expr];

SAY [expr];

SELECT;

[WHEN expr{;| THEN} stmt]...

[OTHERWISEL;] [stme]...]

END; the WHEN exprs are evaluated in sequence
until one results in ‘1’. the stm¢ immediate-
ly following it is executed and control then
leaves the construct. If no expr evaluates to
‘1’, control passes to those stmts following
the OTHERWISE which must then be present.

SIGNAL {ON|OFF} {namel|string}; enable or disable exception
traps. (The condition must be ERROR, EXIT,
NOVALUE, or SYNTAX, and control will pass to
the label of that name should the event oc-
cur while ON.)

go to the label specified. Any pending
statements, DO ... END, INTERPRET, etc. are
terminated.

if numeric then (if negative) inhibit tracing
for a number of clauses, or (if positive)
inhibit debug mode for a number of claus-
es. Otherwise trace according to first char-
acter of the value of expr:

‘E’ = trace after non-zero return codes.

SIGNAL expr;

TRACE expr;

‘C’ = trace all commands.
‘A’ = trace all clauses.
‘R’ = trace all clauses and expressions.

‘r as ‘R’, but trace intermediate evalua-
tion results and name substitutions also.

‘L’ = trace only labels.

‘S’ = display rest of program without any
execution (shows control nesting).

‘0’ or null = no trace.

‘I" = trace according to the next character,
and inhibit command execution.

‘? = turn debug mode (pause after trace)
on or off.

form of labels for CALL or SIGNAL. The
colon always acts as a clause separator.

/* form of comment */ may be used anywhere except in the middle of
a name or string. (Required on first line to
identify REX Execs.)

name:

IBM INTERNAL USE ONLY

®
TEMPLATES for ARGS, PULL, and PARSE

The PULL, ARGS, and PARSE instructions use a template to parse
a string. The template specifies the names of variables that are
to be given new values, together with optional triggers to
control the parsing. Each name in the template is assigned one
word (without any leading or trailing blanks) from the input
string in sequence, except that the last name is assigned the
remainder of the string (if any) unedited. If there are fewer
words in the string than names in the template, all excess
variables are set to null. In all cases, all the variables in the
template are given a new value.
If PULL or ARGS are used, then the separately assigned words
only will first be translated to upper case. When this transla-
tion is not desired, use the PARSE instruction.
The parsing algorithm also allows some pattern matching, in
which you may “trigger” on either a string or a special-character
(the ‘(’ is useful in the CMS environment, for example). A
special-character is one of:

+-x/|&="<>,:)(
If the template contains such a trigger, then alignment will
occur at the next point where the trigger exactly matches the
data. A trigger match splits the string up into separate parts,
each of which is parsed in the same way as a complete string
is when no triggers are used.

COMPOUND VARIABLE NAMES

Any name may be “‘compound” in that it may be composed of
several parts (separated by periods) some of which may have
variable values. The parts are then substituted independently,
to generate a fully resolved name. In general

50-51-59- --- .Sp will be substituted to form:

dg.vi.vp. --- .v, Where d is upper case of s
V1-vp are values of sq-sp.

This facility may be used for content-addressable arrays and
other indirect addressing modes. As an example, the sequence:

J=5 AJ-='fred';
would assign ‘fred’ to the variable ‘A.5’.

BUILT-IN VARIABLES
There are two built-in variables:

RC is set to the return code after each executed
command.
SIGL is set to the line number of last line that

caused SIGNAL, CALL or RETURN jump.

ISSUING COMMANDS to CMS

The default environment for commands in Execs is CMS. A
command is an expression, which may include function-calls,
arithmetic operations, and so on. Operators or other special
characters (for example ‘(’ or ‘*’) must therefore be specified
in a string if they are to appear in the issued command.

To issue a CP command or call another Exec, the first word of
the expression value should be ‘CP’ or ‘EXEC’ respectively. Use
the OBEY command instead if full CMS command resolution is
to be applied.

In editor macros, the default environment for commands is the
same as the filetype of the macro.

IBM INTERNAL USE ONLY

Mike Cowlishaw, Mail Point 182,
IBM UK Laboratories, Hursley Park, Winchester, UK.

CJN address: REXMAIL at WINPA
Telephone: (UK) 0962-4433

IBM INTERNAL USE ONLY

e ——————

®
INTERACTIVE DEBUGGING

Execution of a TRACE instruction with a prefix ‘?’ turns on
debug mode. REX will then pause after most instructions
which are traced at the console. You may then do one of
three things:

(1) Enter a null line to continue execution.
(2) Enter an ‘=’ to re-execute the clause last traced.

(3) Enter a list of REX instructions, which are interpreted
immediately (DO-END statements must be complete, etc.). Dur-
ing execution of the string, no tracing takes place, except that
non-zero return codes from host commands are displayed.
Execution of a TRACE instruction with the ‘?’ prefix will turn
off debug mode. Other TRACE instructions affect the tracing
that will occur when normal execution continues.

The numeric form of the TRACE instruction may be used to
allow sections of program to be executed without pause for
debug input. ‘TRACE n’, (i.e. positive result) will allow execu-
tion to continue without pause for n traced clauses. ‘TRACE -n’,
(i.e. a negative result) will allow execution to continue without
pause and with tracing inhibited for n clauses that would oth-
erwise be traced.

REXFNS PACKAGE of BASIC FUNCTIONS

REX has no “built-in” functions although several packages of
external functions are available. The REXFNS package will be
loaded automatically if needed, and includes the following:

DATATYPE(string) returns ‘NUM’ if the string is a valid number
otherwise returns ‘CHAR’.

DATE() returns the date e.g. ‘6 Nov 80’.
DELSTR(string,n[k])deletes specified sub-string.

INDEX (haystack,needle) returns the position of the needle in the
haystack (same format as PL/I).

LASTPOS (needle,haystack) returns the position of the last occur-
rence of the needle in the haystack.

LENGTH (string) returns the length of the string.

LINESIZE() returns terminal line length.

NEST() will return the current depth of Exec nest-
ing (independent of Exec language).

POS(needle,haystack) returns the position of the needle in the
haystack.

READFLAG() returns ‘STACK’ if the next PULL will read
from the stack, otherwise returns ‘CONSOLE’.
REPEAT (string,n) returns n+1 concatenated copies of string.

STRIP(string[,{'L"'|'T"'|'B'} 1)returns string less leading, trail-
ing, or both sets of blanks. Default is 'T'.

SUBSTR (string,n[k])returns the sub-string of string which begins
at the nth character, and is of length k.

SYMBOL('name') returns ‘VAR’ if the name has been used as a
variable, otherwise returns ‘LIT".

TIME() returns the local time e.g. ‘03:23:35’.

TRANS (string[to-table[from-table]]) Same as PL/I TRANSLATE
function, except that default translate tables
convert string to upper case.

TRUNC(string[,n]) returns all of the string up to the first ‘. plus
up to n characters after it (default n=0).

returns Virtual Machine userid.
returns the number of words in the string.

USERID()
WCOUNT (string)

IBM INTERNAL USE ONLY

@

REXFNS2 PACKAGE of EXTENDED FUNCTIONS

The extended function package is loaded automatically when
needed. Note that the Logical functions (AND, OR, etc.) act
on the individual bits within the character string arguments.

AND (string,string[,pad])logically AND the strings.

CLCL(string,string[,pad]) compare character strings.

CLXL(hexes,hexes[,pad])compare hex strings.

COUNTBUF() return depth of Stack.

D2X (number(length])convert decimal to hex characters.

E2X(hexes) pack hex characters to bytes.

FETCH(addr[length])get bytes from storage. addr must be in
binary form.

OR(string,string[,pad])logically OR the strings.

REVERSE (string) reverses the string.

SUBSET() returns ‘1’ if in CMS SUBSET, else ‘0.

TM ((string,mask[,pad]) test string under mask.

TYPEFLAG([ht|rt]) test and set typing control flag.

VERIFY (string,ref[,~])check the string for invalid characters.

XOR(string,string[,pad]) exclusive OR the strings.

XRANGE ([startchar[,endchar]]) return range of characters.

X2D (hexes) convert hex characters to decimal.

X2E (string) unpack bytes to hex characters.

REXWORDS PACKAGE of WORD PROCESSING FUNCTIONS

These functions all treat data as a series of words delimited by

blanks. The package is loaded automatically when needed.

CENT (string k) returns string centred (width k).

FIND (string,phrase) returns the word number of the first word
where phrase matches the string. Returns ‘0’
if the phrase is not found.

justifies string to both margins (width k), by
adding blanks between words.

returns a string of length k with string left
justified in it.

returns string right justified (width k).

JUSTIFY (string k)
LEFT (string,k)

RIGHT (string k)

SPACE(string,n) puts n spaces between each word. n may be
0, to remove all blanks.
WORD (string,n) returns the nth word in the string.

UTILITY MODULES

All commands that may be called from EXEC or EXEC 2
may be used with REX, except those that always attempt to
set “Old EXEC” variables. Some of the modules available
which are especially useful with Execs are:

CLEAR clears a 3270 screen.

CONGET does an immediate read to the Console
regardless of the state of the input queue.

EMSG behaves like &EMSG in CMS EXEC.

FSX allows full screen control of console or

dialed 3270s, especially useful for applica-
tion modelling.
IEMP allows Execs and macros to be kept in
virtual storage to avoid disk 1/0.
general menu manipulation program, direct-
ly sets REX variables, can display screens
from libraries, etc.
10X uses the REX variables interface for I/0O to
CMS files, PUNCH, etc.

10S3270

IBM INTERNAL USE ONLY

MODULES tests for the existence of modules called
from an Exec. Strongly recommended for
use in any Execs which are “for export”.

OSRESET resets storage for PL/I etc.

PROMPT will prompt the 3270 user with data in the

command input area.

QEXEC detects which of REX and EXEC2 are
currently active.

REXDUMP is a debugging aid that displays up to 50
characters, and the length, of all currently
active variables.

RXLOCATE function: controlled search for one string in
another.

Call as: LOCATE (needle,haystack[,n[,'='1])

RXRND function: returns random integer. Call as:
RND (Llower-limit[,upper-limit]])

STACKIO general I/O package, similar to 10X, but
interfacing to Execs via the Stack.

RESTRICTIONS

There are no restrictions on the length or content of manipu-
lated character data (other than your Virtual Machine size).
CMS Restrictions:

Exec files cannot be more that 65,535 bytes wide or more
than 65,533 (sic) records long.

Lines read from the console cannot exceed 130 bytes. REX
will format output lines of any length to fit the console.
Stacked lines are limited to 130 or 255 bytes (depending on
CMS Release).

Commands entered from CMS command level are translated to
upper case by CMS before being passed to REX.

Command names, function names, and the environment named
by an ADDRESS statement will be truncated to 8 characters.
Implementation Restrictions:

The name of a variable or label may not exceed 150 bytes, and
a literal string may not exceed 250 bytes.

The internal representation of a clause (after removal of com-
ments, extra blanks etc.) may not exceed 500 bytes.

A number may not have more than 9 digits before and/or after
the decimal point.

The control stack (for IF, CALL etc.) is limited to depth 100.
Functions cannot have more than 7 arguments.

COMMAND and EXEC PLIST

REX Execs may be invoked from programs via SVC 202 and
the standard CMS Plist. The Plist can be extended to allow an
untokenised string to be passed and also to permit execution
directly from storage.

For in-store execution, Filename and Filetype are still required
in the file block, since these determine the logical program
name and the default command environment.

REX always provides an extended Plist (without a file block)
when invoking commands.

The standard CMS Plist consists of a series of 8-byte tokens,
pointed to by GPR1, and terminated by 8X'FF'. The top byte
of GPR1 may be set to X'00'. If the top byte of GPRI1 is set
to X'01' then this signifies that GPRO points to the extended
Plist. For calling REX, this has the form:

IBM INTERNAL USE ONLY

®

* The extended Plist:
* a) defines the argument string
* b) points to an optional File Block
EPL DS OF **x Extended Plist

DC A(COMVERB) -> CL5'EXEC '

DC A(BEGARGS) -> argument string

DC A(ENDARGS) -> character after end of
* argument string

DC A(FBL) -> file block, if present,
* otherwise is A(0)

* The file block (only required for non-
* EXEC or in-storage files)

FBL DS OF *x File block
DC CL8'name' logical name of program
DC CL8'type' default destination for
* commands (blanks or 'EXEC'
* both default to CMS)
DC CL2'mode' should normally be ' '

DC H'extlen' 1length of extension block
* in fullwords: H'2' for in-
* store execution, else H'0O'
* Extension block starts here (only required
= for in-store program):

DC AL4(PGM) -> Descriptor list start

DC AL4(PND-PGM)Length of descriptor list

* Descriptor 1ist for in-store program:
PGM DS OF
DC A(line.l)
DC F'len.1'

Address of line.l
Length of line.1l

DC A(line.k)
DC F'len.k'
PND EQU *

Address of line.k
Length of line.k

SAMPLE REX EXEC

/* MOVE: Move file to another disk *x/
Args me Fn Ft Fm (nfm .
If fn=""' | fn="2" | nfm=""' then do

say 'Syntax 1'"s:II MOVE Fn [Ft [Fm]]l (x'

say ' where "x" is the target disk.'
exit 100; end

I0X STATE Fn Ft Fm '(FN FT FM'
if rc=28 then say 'Nothing to move!'
if rco=0 then exit rc

STATE fn ft nfm
if rc=0 then do
Say '"'fn ft nfm'" exists: "Y" to replace’
pull ans .
if ans o= 'Y' then do
Say 'File not moved'

Exit; end
end
else if rc—=28 then exit rc
COPYFILE fn ft fm '= =' nfm '(OLDDATE REPLACE'

if rc=0 then ERASE fn ft fm
if rc~=0 then exit rc
Say '"'fn ft'" moved to disk "'nfm

IBM INTERNAL USE ONLY

