
REX

,J-. .
+ell e81lrIO!!lfHm Page 1.

A Reformed EXecutor - REX
--

InitiDl specificution - 29Mu r79

Mike Cowlishaw: (WINPA MFC) Hursley MP 182.

1. Introduction.

The CMS excc language (which htls since been extended und improved upon
by EXEC 2) is based on the common mtlcro language principle that variables
and controls should be distinguishQd (by "I") and literliis should exist in
'plain text'.

When EXEC's were mainly consisting of strings of commands. with very
little logic in between. this was a fair and sensible choico: howQver u
quick scan throUgh the EXEC's of almost any modern user quickly shows that
the majority of tokens in use are symbolic (that is. they begin with "I").
This observation must cast serious doubts on the validity of using this
syntax.

A further argument is the increasing use of "complicated" strings in
EXEC's: for eXllmple embedded blunks ure increusingly used in Editor
Macros; full screen displays; and so on. EXEC 2 handles these only fairly
well. whereas EXEC cannot manipulate them at all: the user is reduced to
unreadable manipulations of the Underscore character to achieve the
desi red resul t.

There is perhaps at least some justification in investigating an
alternative macro command language l~hich uses the 'mora conventional'
notation used by the higher level programming languages such as PL/l;
PL/S; PASCAL; and so on. The PL/l Preprocessor is lln IOlxtlmple of this type
of macro langullge. and in an IB~1 environment will strongly influence the
syntax that would be considered acceptable.

The use of this type of notation will naturallY C~U5e users to draw
comparisons with the normal programming languages. This inevitably will
lead them to expect a corresponding improvement in the facilities
available in the command language: this in turn certainly implies that the
interpreter will be larger and :5lowar than either EXEC or EXEC 2. Size
(within reuson) is not often a problcm on modern virtu.:.l machines. however
a performance penalty may be unacceptable in some environments. It would
be hoped that by using a subset of the available facilities. the REX user
would be able to attain at least a comparllble performancla.

~<!hilt tht:n are the major desi rllble features for u command macro
lilnguage? My choice includes:

1) Structured flol-J control statements. some equivillent of
If-than-else. Do (until/wl,ile)-end. Select-l.ll'en-elld
baing tho most important.

2) Free formtlt: not line-by-line
3) Case translution on output ollly: comparisons case-independent
4) Literal shortl,and: unknown 'tokcns' assumed to be enclosed

REX !'en 88I1NiBEIITliltt Page 2.

; n quotes.

5) 'Complex' exprossions (; .0. pDrenthoses. multiple operators)
6) In line 'function' calls to other EXEC's or MODULEs
7) No requi rem£!nt for sel f-modi fy; ng EXEC' 5

The next section discusses these topics in more detllil, hOl~ever the
impatient (or busy) reader may prefer to skip to the language definition
in section 3.

REX IBII UIIFiBiIITl:\L Page 3.

The following items are not intcnded to be rigorous definitions of the
languilge tOutures; and some i mpl i ci t assumpt ions about the languilgQ
syntax and the host system will be apparent. They ilre rather general
descriptions of th", syntax and tho decisions leading to each choice.

~.1 Strud:lJrp.d flow control ;;tatl'ml'nts.

The net!d for structured flo~1 control is accepted by most
programmers. The three main clas~es of structured flow control are
the If-then-else; Do (while/untill-End; and Select-when-end. (1 usc
the IBM CPl/I) constructions rather than any of the possibly superior
alternatives described in the literature purely for consistency.)
If-then-else has been implemented for EXEC by uS1ng modules; EXEC 2
has Do-While and Do-Until; but neither has any form of select (case)
structure. Evidently all theso features are desir~ble for any modern
lil;nguage.

,a.,2. Fn.q format: not line-b,,-linq.

A free format statement is possibly more general than fixed
(line-by-line) format. The latter option implies a record-orientated
file system, whereas the former is applicilble both to record and
charllcter stream fi les or input devi ces. By the same token, a free
format structure would in general permit bettC!r solf-documentation
of EXEC's, since comments could occur almost anYI~llere in the input
strollm.

This decision puts some restrictions on possible rllndom-ilccess of
REX files, ~lhich would no longer be possible. See section 2.7.

ThiLl obvious statement delimiter to use l~oulcl bQ ';', with nt ... It/

or (* ... *) for comments.

z..} Case translati on .Q.!1 oytput only.

The operating system underlying the REX interpreter may require
that commands be passed in Upper case. This perverse restriction may
force REX to translate ,;trings output to the host system. Despi to
thi s. there is no necessi ty for any commands input to REX to be
translated (always or sometimes). A cleaner nnd more natural
algorithm is that a) no variables or input data will be translated,
and b) all logical conparisons will be case-indopendent. Thus the
expression" 'YES' = 'YQS' .. will result in the value 'I' ("True").

~.i litC"clII shorth"lnd1. Blllnk opC"rator.

A convenient convQntion for 1I macro language is thllt of 'litcr~l

shorth.nnd'. My definition of this l~ould be: If II svmbol is unknown
(i.e. not 01 variable, REX kC!YI~ord, or function cllill then it is
a~sumC!d to represent a literal string corlsisting of the characters of
the symbo 1.

A further convenient extension to 'st<Jndard' syntaxes is the

REX !IlII eOllr!6EiliiH' Page 4.

concept of the 'Blank' operator. Thi~ may be defined verbally thus:
If b~o expressions (ie symbols, litl~r.:lls, etc) are separated by one
or more blanks and no othpr opprntor then the operation of
'concatenate with a blank in between' will be performed. For example
'A' 'B' would be evaluated to 'A B'.

The tlffect of these two conventions allows a syntax that combines
the advantages of both EXEC languages ilnd the PL/l 1 i ke model.
Consider the following excerpt from a REX EXEC (assume that Fn, Ft,
Fm are symbols representing variables previously set up by
assignments etc):

State fn it fmi
If retcode=O then erase fn ft fm;

which is more readClble than the equivalent 'Strict. PIll' form:

'State I II' 'II fn I I' 'II ft II' • II fm;
If retcode=O then 'Erase' II' '1Ifnll' '11ftll' '1lfm;

Note that a statement which is an expression on its own
passed to the host system as a command.

~.2 'Complex' expressions.

is a

be
and

must
able

dyadi c operators to
together with the

Compound character and arithmetic expressions really are a
necessity for any language. Even simple assemblers usually allow
more than one operator in their constant expressions: so why
shouldn't a command interpreter? There ore three possible
implementations of compound expressions; a) simple Left -> Right (or
Right -> Left - APU scanning; b) Revl:lrsl:l polish notation (e.g.
FORTH); c) full algebraic, with parentheses and operator priorities.

Option b) is probably unaccQptable to the IBM user, and is also
somel~hat outdated as a solution. Option a) is a considerable
improvement on no compound expressions at all, but 15 not ideal ­
especially as logical operation~ should be treated as normal
operators, rather than special cases.

Option c) is of course the best, and need not necessarily
significuntly more complicated than al. The algorithms
techniques are well understood, and an EXEC interpreter
necessarily include storage management routines l~hich should be
to handle stack(s).

I would consider the minimum set of primitiVe
include: + - * / II and CIS defined above,
logi cal operators = ~= > < >= <=

~.&. In line 'functioll' calls to oth<>r EXEC's.Q...C MODULEs.

TIle ability to define in-expression functions gre~tly increases
the pOl~er of a language, and reduces the need for specialised builtin
functions.

The host system is assumed to i nclllde at least one command
executor <lnd a stilck/queue of 50lne kind. A sub-cl.:l55 of commands
(EXEC's or MODULE's ?l are those which accept arguments only from a
(the) ~tack, and put their results back on the stack. This subclass

REX fBli CUll: IbCillisJlll... P<lge 5.

tho
tho

and included in the REX language using
parentheses with commas to separate

can be termed 'functions'
conventional notation of
argument expressions.

For eX;;lmple if the function 'SUBSTR' wero not built-in, it could
be ilnplemented by a separate MODULE (or subcommand, or EXEC); with
the arguments being the three top items on the stack. Clod returning
the result string on the stack.

The syntax description t~ould therefore be: If a symbol is
followed imml'!diatply by a "(" then it is taken to be a function name.
each expression follol~ing the TI(" and scpQratQd by"," is stacked,
and the function is invoked l~hen tho final ")" is interpreted.

This gives a 'normal' syntax for function calls. without the need
for a new statement for every command.

Note that since 'blank' is a valid dyadic operator, thare must not
be a blank between the funet:ion name and the ,,(no

.f..I No reQuir~ment for self modifying EXEC's.

Thi sis a
fact, the
exec: and

EXEC and EXEC 2 both permit self-modifying EXEC's.
"nice" facility which however is typically not used. In
only time it normally occurs is when one edits an 'EDIT'
then it is usually more of an embarrasment than a help.

REX ~~ould therefore assume that all EXEC's are READ OHlY. This
could imply: a) the entire EXEC could be read in in one file system
operation (inefficient for long file~, perhaps); and b) statements
that might be re-interpreted (e.g. in loops) could be part compiled
for improved performance.

This l<lnguage restriction also opens up the attractive possibility
of compilation or part compilation of the language: a possible
implementation might therefore consist of a 'compiler' which
produces an 'object file' which could then be very efficiently
interpreted by the REX EXEC processor, with rQal performance
improvement s.

REX

J. Tho lAnQuagg d~finition

1611 UUfIBEIITfft't Page 6.

Hote:
syntax.
I~elcol:le.

This definition is not il totally rigorous description of
It ;s amenable to change, and suggestions for changes are

'h.
most

The languago Chere;nfter c<llied REX) is composcd of tokC!ns Cof any
length, up to lln implementation r'C!stricted maxilnum) which <IrQ sepClrated by
blanl(5 or by the nature of tho tokens tllemsolvos. Tho classes of tokens
are:

Symbols: Groups of alph<:Jmeric ch<:Jractor's.
"Alphameric" may include certain non alphnbClticill or
numeric characters.
A meaning of a symbol is context defined: once one
hilS appeared as the t<Jrgct of an assignment statement
(5Q12 bl21ow) it is a variilble. If it is immediately

followed by a uC" it is the name of a function. If
it is a REX commrmd keyword, it is interprlltlld as such.
If it is none of these it is considered to be a string
composed of the letters of the symbol wi th a quote
~dded before and after.

(Integer~: Groups of numeri c characters: a subclilSS of symbol s)
Strings: a string including <:lny chilracter Clnd dolimited by the

si ngle quote character (.). Two quotes (") must be used
to include a single quote in the string.

Operators: Groups of one or mor'a non-illphameric chilracters.
Comment~: Strings delimited by /M ... lU or possibly (M .. M).

Commonts are entirely ignored by the interpreter.

For exampliLl the data" 'A'+B .. is composed of threQ tokens: a string,
an operator, <!Ind a symbol.

Each languagQ statemQnt is composed of: 0 or more blanks (I~hi ch ilre
ignored); a sequence of tokens; 0 or more blanks (agilin ignored); and the
delimiter';' (se~icolon).

Within the sequence of tokens; comments (and separator blanks that are
adjacent to operators or other blanks) are ignored. Any blanks left in ttle
data are then valid (concatenation with blank) operators (sea below). The
statement data is then interpreted.

The statement data may be:

M Null - which has no effact

K An assignment - of tha form "Symbol=expression" (section 3.3)

!of A host command - consisting of .:In expression. (s(!ction 3.4)

if A REX cornmllnd - starting l~ith.:l I«!yword symbol (sC!ction 3.5)

REX

~.~ Expressions ~nd operators.

IBP' OOIIPI8!IIHA!:l Page 7.

Nearly all statements may include expressions which consist of
integers, symbols, or stri ngs interspersed wi th operators and possi bly
parentheses. I shall not bore the reader with yet another BNF-like
description of expressions, but will just give some examples.

Suppose that the following symbols represent variables; with the
values as shown:

A has the value' 3'
DAY has the value 'Monday'

Then:

"A+5" will
"ToduY is DAY"
"CA+I»7"
"(A+I)=4"
" , If it is' Day"
"Substr(Day,2,3)"

evaluate
==>

==>
==>
==>
==>

to '8'
'Today

'0 '
'1'
'If it
'ond'

is Monday'
1* False *1

1* True *1

is Monday'
1* Substr is a function *1

Logical operations result in
'1' or '0'.

The val i d operators could be:

+ I * := (usual meanings)
11 : = Concatenate
, , Cblank) := Conc<ltenate ~Jith blank (II' 'II)
= -- := Equals, Not Equals)
<><=>= :=IT,GT,lE,GE)
& I && : = AND, 0R, EX 0R)

REX

,J..}. Assignml"nt stat{'ments

An ass; gnment is always of thl<! form:

"symbol=expression"

IOU GiIlFIiiIIH,\t Page 8.

The syrnbol is any valid collection of alphameric characters (as
described above) ilnd including~ bl"!ginning Nith ~ nUmbl'H" (0-9), By

being the tilrget of an <lssignmer,t in this m<lnner, it ;s contaxtually
declared as a v~riablQ: iI' otllor words. in all succeeding statQ!nents thi5
particular collection of characters represents a string in storago.

Note: since an expression may includl:! the oper<:Jtor '=', and a statement
may consist purely of an expression (see next section), there is a
possible iJr:lbiguity here. REX will therefore take any statement whoso,
second token is ':;' to be an assignment statement. not Dn expression.

REX

1.1 Host commands

lIS" COl" ibEiITIh[Page 9.

The 'TARGET MACHINE' for REX is ~ssumQd to
stacl</quQue, and at least one port for Qxecuti ng
ports is ussumcd to be the' mal n' port.

Executing commands through the main port may
statement of the form:

"expression"

include at least one
commands. One of these

be achieved using a

The expression is evaluated, resulting in a character string, which is
then prepared as appropriate and submitted to the Host. For example, if
the host were a eMS system, the !itr-ing l,.lould be a-byte token; sed, and
pass; bly the fi rst token would be translilt.ed to upper case.

This sort of manipulation would be carried out by an interface routine
not strictly part of REX.

As an eXilmple of how a eMS command mi ght be issued, the sequence:

fn=JACKi ft=RABBITi fm=AI;
Stilte fn ft fmi

would rc'~sult in the PUST: "STATE JACK
submitted to eMS. Of course, 'Stilte JACK
s<lma effC!ct in thi 5 c;;Ise.

RABBIT Al .. being
RABBIT AI' would have the

REX IBII &illCliagllTlAt Page 10.

Sever~l of the more powerful f~atures described above (notably
functions Dod ease handling) reduce the number of primitive REX commands
and built-in functions that are needed.

A further assumption, that all input parameters to u REX program will
be available as the top item in the Stack, also simplifies this
requirement, and does al-lay with the special 'parilmeter veariables' <&1 - &n
in EXEC). TI,erQ will always be this top-af-stack string on entry to a REX
program' it milY hilve the value null.

This section describes a minimum sot of commands ~lhich would at least
allol-l the facilities of EXEC (and nearly ;)11 of those of EXEC 2. the

exc~ptions being tha special-case subcommand and environment stutements,
t~hi ch could bQ IUlsi ly addQd: PQrhaps ; n a more gQner~11 form).

Note that the choice of keYI.lOrd:!!i is fairly arbitary: as noted earlier,
there arc cQrtainly arguable altcrnat;vQs to most of them.

In thQ following diagrams, 5ymbols (words) in capitals dQnote
keywords, other words (such as 'expression') denote u collection of
symbols as defined abovo. Note however that the keywords are not case
dependent: the symbols "if", "If" and "iF" would all invoke the command
shown belol-l as "IF".

The characters < and> delimit optional parts of the commands.

IF expression THEN statement <ELSE statement>

cl,aracter 'I' then
any other result. the

If the eXllress;on evaluates to tile sit\gle
stutoment follol-ling the THEN is executed. For
statement is executed.

Note that 'statement' may include a Do Group (list of statements).

DO <1oop-condi t ion) ; stut(lmcmt-li st EtlD

where loop-cond; tion is: I-mILE expression
or: UNTIL expression

and :!!itatQment-l;st is any list of statements

tIn!
ELSE

is eVOlluated,
Whi Ie tho

If no loop-condition is
executed once.

Oi::h:lrw;se the exprossicn
rQpeatodly executed either
expression:'!'.

gi von. thon the statement-list will be

and the statement-list will be
express;on:'!', or Until the

REX

SELECT expression' when-list <OTHER ISE sta ement> END

Page 11.

where
and

when-list is:
when-clause is:

1 or more when-clause
HEN expression; statement

The expression following the SELECT is evaluated. Each expression
following a WHEN is evaluated in turn and compared with the first
expressi on: if i dent i cal, the follow i ng statement is evaluated and
control will pass to the END.

If none of the WHEH expressions match, control will pass to the
statement following OTHERWISE. In this situation, the absence of an
OTHE WISE will cause an error.

QUEUE expression

The string resu ting from expression will be stacked FIFO.

PUSH expression

The string resulting from expression will be stacked LIFO.

PULL symbol-chain

Where symbol-chain is a list of symbols separatod by blanks
or operators.

The current top-of-stack will be read as one string. It will then be
parsed according to the normal rules, and tokens assigned to the symbols
given in sequence. This contextually declares the symbols given to be
variables.

If there are less sy.bols in th symbol-chain than there are tokens in
the string; he fi al symbol will have the re ainder of the input string
assigned a it as a single unedited string.

Thus in he limiting case of there only being one symbol specified, it
will be assigned the entire input string.

The function of he operators in he symbol chain is 0 force
synchronisation be ween the input okens and the symbols given. n the
obvious CnS-like exa pIe, if the input string is: , AA BBB eccc', and the
sy.bol chain is 'Fn Ft Fm (01' th n the two chains will b synchronised at
the '(', and the variable 'Fm' will have the value" (null>'

ThQ REX variable 'H' t-Jill be set to the number of tol<ens or strings
assigned values in the PULL command.

REX

SAY expression

IBII OlIllrIel'!llTfAt Page 12.

The string resulting from expression ;s displilyed (or spoken. or
typed. etc) to the user via whutevQr channel is available.

EXIT expression

The expression is converted to iJ number, and execution is terminatCld
with the number being used to set the returncode.

RETURN expression

The expression is PUSHed onto the stack. ilnd exC!cution ;5 terminated
with returncode set to zero.

TRACE expression

The ilPpropriate netion is tuken Clccording to the:! value of expression:
'ON' - all stiltements are trilcad
'ERROR' - host commands resulting in non-O returncode arc traced
anything

else - no statements aro tr<lced

ERROR stiltcment

If any fallal-ling com:nand returns a non-ZQro returncode, the given
st~tement (which may be Do-End, etc) will bo executed.

REX

i. Built in fJnctions and variables.

IfIll OBIIP!Dl!lJiI#tL Page 13.

Since REX c~n include functions directly in expressions, the need for
built-in functions in reduced. The more complicated ones (such as SUDSTR
and INDEX) would probablY not be includod in an initial implementation.
Even 'DATATYPE' could be initially implemented as an external routine.

Certain symbols will have predefined meanings these are a
conventional selection.

BLA KS
o TE
N
NL
Q

RC)
RETCODE)
TIME

full length string of blanks
Current Date
'umber of symbols assi gned values in the last PUll
The 'New line' character (EBCDIC X'lS')
I' if there is anything in the queue (Stack), else '0'

Return code from last host command

Current Time

REX

,2.. Gote' 5 and l<lbel s.

nil 681IrIB!IITIitE Page 14.

A GOlD statement and its corresponding labels are obvious omissions in
the language as dClfined above. There is no reason why labels (symbol
followed directly by';') and a "GOTO expression" should not be
implornQnted.

Thoughts on the dQ~irability of this are solicited from the re.:lder,
though the author feels they should probubly be added. as the 'line of

least user resi stance'.

· .
REX

~. Re canning and arravs.

Ull OiIlFIEI'!IIT!Jli! Page 15.

EXEC and EXEC 2 both allow a partial rescanning facility to allow
subscripted variables to be manipulated. This is one of the problem areas
in REX.

Arrays can be easily simulated with a SUBSTR function, or with
specially written array functions, however as REX does not permit
pseudo-variables, this is clumsy.

An associated problem is due to the simplified parameter handling:
since we do not have the variables &l ... &n, certain operations (such as
scannin the argument list for keywords) are difficult. WORO(n) function
would solve this problem fairly neatly.

Alternative solutions include:

a) a 'concatenate and rescan' operator to specifically handle
subscripts (messy).

b) built in array handling (implies some form of Declare statement)
c) an 'REX' command, to execute the given string as though it were

a one-record REX program. (Powerful).

What are your thoughts?

REX

1. EX<lmplf! EXEC' ~ for eMS llsing REX.

ADDR EXEC

nil UIIFI8EIITIAl Page 16.

1* Displays full address "lnd name for nicl<names specified lE/

Do unti 1 rest:=·,;
Pull Nick Rest;

If n=O I Nick:;'?' then 1* tell *1 do;
Say 'Correct form; ADDR namel <name2 <name3»'

n1
nl 'ADDR searches your r0159 fi Ie for the spoc; fi sd ni ckname.·
nl 'If it finds the name. it displays the actual systom and userid'
nl 'of the user. If the name is not found, it checks for a local'
nl 'userid with the same n<lrne.·;

n, Multiple help for multiple ?'5!! *1

end;
else III we have a nickname *1 do;
Push HT;
STATE Nick DISTRIB *;
Push RT;

If RC=O then Say nick is a distribution list:
else III not a list lV do;

SCANRMSG nick;
rr=rci /* save *1

FINIS .. Rl1SG *;

if rr=O then do;
/* some data was stacked */

Pull nn node uid via nl n2 n3 n4 n5;
if uid::" then say

Hick is the nickname for the local user node;
el::;e say

Mick 15 the nicknmne for nl n2 n3 n4 n5 (uid at nodel;
Qndi

else /* nothing was stacked. might be a local userid */ do;
CPCm.M TRMI5FER CL 1 FROM Hi ck;
Pulli Pull; /* clean stack after CPCOMM */

If RC::O then say Hicll is a local VM id;
121 se say Nick is ell) unknol~n name;

end;
end /* we had a nickname */;

i f rest~::·· then push rest;
end /* until rest::·· */;

REX

SEND EXEC (from the EXEC 2 documentation):

101' SSU? .. ~1IT1' l Page 17.

/ Send fi Ie to a local user /
Pull name fn ft fm;
if ncu':1e=" I name='?' then do;

say 'Command 1S: SEND User Filename Filetype <Filemode>';
eX it 100;
end;

if n<3 I n>4 then do: I Check number of arguments I

S<lY Bad SE 0 command;
exit 101:
end:

if f =" then fm='Jof'; 1M assume ANY if no mode given I

CP SPOOL PUN name Cl SS A;
if rc~=O then do; /* check SPOOL worked I

say name is not a valid userid:
exit 102;
end;

PUNCH Fn Ft Fm:
if rc-=O then do; 1M check PUNCH worked MI

say Error rc 'from "PUNCH" (while in SEND)';
nn=102;
end:

else I Tell recipient what has been done *1 do;
CP MSG Name I Have just punched you my file Fn Ft Fm:
nn=O;
end;

CP SPOOL PUN * CLASS A;
Exit nn;

REX nil toili I!ElITiJlt Pago 18.

/If MOVE: File Copy + Erase */

Pull Fn Ft Fm (x nfn nft;
If n=O

I Fn='?' then do;
,oy

nl'Format: MOVE Fn < Ft < fm» < ex <Hfn <Nft »>,
nl' where "X" is the di 5k to move to.'
nl' Any of fn/Ft/Fm may be specified as lE'
nl' Additionally, you may specify thl<! flClme the file is to be'
nl' knOl,m by on the new di 5k by g; v i n9 "Hfn Hft". ';

exit; end;

If Fn::" then do;

SilY 'WHAT am I meClnt to move? Next time give me a filename!';
Exit 28;
end;

if Ft=" then Ft='lE'; if Fm=" then fm='lE';
FIHDFIlE Fn Ft Fmi
If RETCODE-=O do;

PlIll; 1* Clean up after findfile ~u

say 'Nothing to move!';
Clxit s;
end;

pull fn ft fm; III Get fn etc to use lEI
/lE nOl-J check target lU

if nfn=" then nfn=fn;

if nft=" then nft=ft;
if nfm=" then do;

nfm=bi gdi 5k();

Say Move FN FT FM to disk NFM - 'CEnter NULL, MODE, or "QUIT")';
Pull ans;
if ans='Quit' -then exit;
if ans=" then nfm=ans;
end;

odk = substrCfm,l,ll;
ndl(= subsl:rCnfm.I,I);
If NOK=ODK then do;

Say' You may not move the file onto itself.';
Say' ~jB; Source di sk could be i.1 R/O extensi on of target';
Exi t 32;
end;

STATE NFN NFT NFM ;
IF RC~=28 then do;

if retcode~=O exit retcode;
Suy nl ~lFN NFl t~FM 'alreildy exi sts; type nyn to replace';
pull ons;
if ans ~='Y' th!:!n do;

Say File not moved
Ex it;
Qnd;

end;

REX

ERROR Exit RETCODE;
FCOPY FN FT FM NFN NFT NFM;
Say NFN NFT now on disk NFM;
ERASE FN FT FM;
Say FN FT erased from disk ODK;
Say;

,@,. 001IfIBEtUiJ!ilt1! Page 19.

