A Reformed EXecutor - REX

Initial specification - 2%Mar79

Mike Cowlishaw: (WINPA MFC) Hursley MP 182.

1l. Introduction.

The CMS exec language (which has since been extended and improved upon
by EXEC 2) is based on the common macro language principle that variables
and controls should be distinguished (by "&") and literals should exist in
"plain text'.

Khen EXEC's were mainly consisting of strings of commands, with very
little logic in between, this was a fair and sensible choice: however a
quick scan through the EXEC's of almost any modern user quickly shows that
the majority of tokens in use are symbolic (that is, they begin with "&").
This observation must cast serious doubts on the validity of using this
syntax.

A further argument is the increasing use of "complicated" strings in
EXEC's: for example embedded blanks are increasingly wused in Editor
Macros; full screen displays; and so on. EXEC 2 handles these only fairly
well, whereas EXEC cannot manipulate them at all: the user is reduced to
unreadable manipulations of the Underscore character to achieve the
desired result.

There is perhaps at least some Jjustification in investigating an
alternative macro command language which uses the 'more conventional!
notation used by the higher level programming languages such as PL/1;
PL/S; PASCAL; and so on. The PL/1 Preprocessor is an example of this typa
of macro language, and in an IBM environment will strongly influence the
syntax that would be considered acceptable.

The use of this type of notation will naturally cause users to draw
comparisons with the normal programming languages. This inevitably will
lead them to expect a corresponding improvement in the Tfacilities
available in the command language: this in turn certainly implies that the
interpreter will be larger and slower than either EXEC or EXEC 2. Size
(within reason) is not often a problem on modern virtual machines, however
a performance penalty may be unacceptable in some environments. It would
be hoped that by using a subset of the available facilities, the REX user
would be able to attain at least a comparable performance.

What then are the major desirable +features for a command macro
language? My choice includes:

1) Structured flow control statements, some equivalent of
If-then-else, Do (until/whilel)-end, Select-uhen-end
baeing the most important.
2) Free format! not line-by-linea
3) Case translation on output only: comparisons case-independent
%) Literal shorthand: unknown '"tekens' assumed to be enclosed



in quotes.
5) '"Complex' expressions (i.e. parentheses, multiple operators)
6) In line 'function' calls to other EXEC"s or MODULEs
7) No requirement for self-modifying EXEC's

The next section discusses these topics in more detail, however the
impatient (or busy) reader may prefer to skip to the language definition
in section 3.



2. The language features

The following items are not intended to be rigorous definitions of the
language features; and some implicit assumptions about the language
syntax and the host system will be apparent. They are rather general
descriptions of the syntax and the decisions leading to each choice.

2.1 Structured flow control statements.

The need for structured flow control is accepted by most
programmers. The three main classes of structured flow control are
the If-then-else; Do (while/until)-End; and Select-when-end. (I use
the IBM (PL/1) constructions rather than any of the possibly superior
alternatives described in the literature purely for consistency.)
If-then-else has been implemented for EXEC by using modules; EXEC 2
has Do-While and Do-Until; but neither has any form of select (case)
structure. Evidently all these features are desirable for any modern
language.

2.2 Free format: not line-bv-line.

A free format statement is possibly more general than fixed
(line-by=-line) format. The latter option implies a record-orientated
file system, whereas the former is applicable both to record and
character stream files or input devices. By the same token, a free
format structure would in general permit better self-documentation
of EXEC's, since comments could occur almost anyvwhere in the input
stream.

This decision puts some restrictions on possible random—-access of
REX files, which would no longer be possible. See saction 2.7.

The obvious statement delimiter to use would be ";', with 7%...%/
or (¥..,.¥) for comments.

2.3 Case translation on output only.

The operating system undarlying the REX interpreter may require
that commands be passed in Upper case. This perverse restriction may
force REX to translate strings output to the host system. Despite
this, there is no necessity for any commands input to REX to be
translated (always or sometimes). A cleaner and more natural
algorithm is that a) no variables or input data will be translated,
and b) all logical comparisons will be case-independent. Thus the
expression " 'YES' = 'Yes' " will result in the value '1" ("True™).

2.4 Literal shorthand & Blank operator.

A convenient convention for a macro language is that of "literal
shorthand'. My definition of this would be: If a symbol is unknown
(i.e. not a variable, REX kevword, or function call) then it is
assumed to represent a literal string consisting of the characters of
the symbol.

A further convenient extension to 'standard' syntaxes is the



concept of the "Blank' operator. This may be defined verbally thus:
If two expressions (ie symbols, literals, etc) are separated by one
or more blanks and no other operator then the operation of
'concatenate with a blank in between' will be performed. For example
A" 'B'" would be evaluated to A B'.

The effect of these two conventions allows a syntax that combines
the advantages of both EXEC languages and the PL/1 1like model.
Consider the following excerpt from a REX EXEC (assume that Fn, Ft,
Fm are symbols representing wvariables previously set up by
assignments etc):

State fn Tt fm;
If retcode=0 then erase fn ft fm;

which is more readable than the equivalent "Strict.Pl/1' form:

vState [ YlEall v 0 LFELLY " Efms
If retcode=0 then 'Erase’||" "||fnl]" "||FftLl" "[]|fm;

Note that a statement which is an expression on its own 1is a
passed to the host system as a command.

2.5 'Complex' expressions.

Compound character and arithmetic expressions really are a
necessity for any language. Even simple assemblers wusually allow
more than one operator in their constant expressions: 50 why
shouldn't a command interpreter? There are three possible
implementations of compound expressions: a) simple Left -> Right (or
Right -> Left - APL) scanning; b) Reverse polish notation (e.g.
FORTH); c) full algebraic, with parentheses and operator priorities.

Option b) is probably unacceptable to the IBM user, and is also
somewhat outdated as a solution. Option a) is a considerable
improvement on no compound expressions at all, but is not ideal -
especially as logical operations should be treated as normal
operators, rather than special cases,

Option €) is of course the best, and need not necessarily be
signifTicantly more complicated than a)d. The algorithms and
techniques are well understood, and an EXEC interpreter must
necessarily include storage management routines which should be able
to handle stack(s).

I would consider the minimum set of primitive dyvadic operators to
include: + - ¥ / || and ' ' as defined above, together with the
logical operators = == > < >= <= |

2.6 In line 'function' calls to other EXEC's or MODULES.

The ability to define in-expression functions greatly increases
the power of a language, and reduces the need for specialised builtin
functions.

The host system is assumed to includa at least one command
executor and a stack/queue of some kind. A sub-class of commands
(EXEC's or MODULE's ?) are those which accept arguments only from a
(the) stack, and put their results back on the stack. This subclass



can be termed 'functions' and included in the REX language using the
conventional notation of parentheses with commas to separate the
argument expressions.

For example if the function 'SUBSTR' were not built-in, it could
be implemented by a separate MODULE (or subcommand, or EXEC); with
the arguments being the three top items on the stack, and returning
the result string on the stack.

The syntax description would therefore be: If a symbol s
followed immediately by a "(" then it is taken to be a function name.
each expression Tollowing the "(" and separated by "," is stacked,
and the function is invoked when the final ") is interpreted.

This gives a "normal' syntax for function calls, without the need
for a new statement for every command.

Note that since 'blank' is a valid dyadic operator, there must not
be a blank between the function name and the "(".

2.7 No reauirement for self-modifving EXEC's.

EXEC and EXEC 2 both permit self-modifying EXEC's. This 1is a
"nice" facility which however is typically not used. In fact, the
only time it normally occurs is when one edits an "EDIT' exec: and
then it is usually more of an embarrasment than a help.

REX would therefore assume that all EXEC's are READ OHLY. This
could imply: a) the entire EXEC could be read in in one file system
operation (inefficient for long files, perhaps); and b) statements
that might be re-interpreted (e.g. in loops) could be part compiled
for improved performance.

This language restriction also opens up the attractive possibility
of compilation or part compilation of the language: a possible
implementation might therefore consist of a 'compiler' which
produces an ‘object file' which could then be very efficiently
interpreted by the REX EXEC processor, wWith real performance
improvements.



3. The lanquage definition

Note: This definition is not a totally rigorous description of the
syntax. It is amenable to change, and suggestions for changes are most
welcome.

3.1 Tokens and statements.
The language (hereafter called REX) is composed of tokens (of any
length, up to an implementation restricted maximum) which are separated by

blanks or by the nature of the tokens themselves. The classes of tokens
are:

Symbols: Groups of alphameric characters.
"Alphameric™ may include certain neon alphabetical or
numeric characters.
A meaning of a symbal is context defined: once one
has appeared as the target of an assignment statement
(see below) it is a variable. If it is immediately
followed by a "("™ it is the name of a function. If
it is a REX command keyword, it is interpreted as such.
If it is none of these it is considered to be a string
composed of the letters of the symbol with a quote
added before and after.
(Integers: Groups of numeric characters: a subclass of symbols)
Strings: a string including any character and delimited by the
single guote character ('). Two guotes ('') must be used
to include a single quote in the string.
Operators: Groups of one or more non-alphameric characters.
Comments: Strings delimited by 7% ... ¥/ or possibly (¥ .. ¥).
Comments are entirely ignored by the interpreter.

For example the data " 'A'+B " is composed of three tokens: a string,
an operator, and a symbol.

Each language statement is composed of: 0 or more blanks (which are
ignored); a sequence of tokens; 0 or more blanks (again ignored); and the
delimiter ';' (semicolon).

Within the sequence of tokens; comments (and separator blanks that are
adjacent to operators or other blanks) are ignored. Any blanks left in the

data are then valid (concatenation with blank) operators (sea below). The
statement data is then interpreted.

The statement data mav be:
¥ Null - which has no effact

¥ An assignment - of the form "Symbol=expression”" (section 3.3)

*

A host command — consisting of an expression. (section 3.4)

¥ A REX command - starting with a keyword symbaol (section 3.5)



3.2 Expressions and operators.

Nearly all statements may include expressions which consist of
integers, symbols, or strings interspersed with operators and possibly
parentheses. I shall not bore the reader with yet another BHF-like
description of expressions, but will just give some examples.

Suppose that the following symbols represent variables; with the
values as shown:

A has the value "3"
DAY has the value "Monday'

Then:

nATEN will evaluate to "8°

"Today is DAY" ==> '"Today is Monday"'

L o 8 R e L ==> L I /% False %/
"(A+1)=4" ==> CEL /7% True X/

I vk 18" Day" ==> 'If it is Monday"'
"Substr(Day,2,3)" ==> 'ond"' /% Substr is a function ¥/

The valid operators could be:

+ = / ¥ := (usual meanings)
| := Concatenate
' ' (blank) := Concatenate with blank Cl]" "[[)

= Equals, Not Equals )
<= >= *= LT, GT, LE, GE ) Logical operations result in
&& += AND, OR, EXOR ) LY depe QY

2 A
-— 1



3.3 Assianment statements

An assignment is always of the form:
"symbol=expression"

The symbol is any wvalid collection of alphameric characters (as
described above) and including those beginning with a number (0-9). By
being the target of an assignment in this manner, it is contextually
declared as a variable: in other words, in all succeeding statements this
particular collection of characters represents a string in storage.

Note! since an expression may include the operator '=', and a statement
may consist purely of an expression (see next section), there is a
possible ambiguity here. REX will therefore take any statement whose
second token is '"=' to be an assignment statement, not an expression.



3.4 Host commands

The 'TARGET MACHINE' for REX is assumed to include at least one
stack/queue, and at least one port for executing commands. One of these
ports is assumed to be the "main' port.

Executing commands through the main port may be achieved using a
statement of the form:

"expression"

The expression is evaluated, resulting in a character string, which is
then prepared as appropriate and submitted to the Host. For example, if
the host were a CMS system, the string would be 8-byte tokenised, and
possibly the first token would be translated to upper case.

This sort of manipulation would be carried out by an interface routine
not strictly part of REX.

As an example of how a CMS command might be issued, the sequenca:

fn=JACK; ft=RABBIT; Tm=Al;
State fn ft fm;

would result in the PLIST: "STATE JACK RABBIT Al " being
submitted to CMS. Of course, "State JACK RABBIT Al' would have the
same effect in this case.



3.5 REX Commands.

Several of the more powerful features described above (notably
functions and case handling) reduce the number of primitive REX commands
and built-in functions that are needed.

A further assumption, that all input parameters to a REX program will
be available as the +top item in the Stack, also simplifies this
requirement, and does away with the special 'parameter variables' (21 - &n
in EXEC). There will always be this top-of-stack string on entry to a REX
program: it may have the value null.

This section describes a minimum set of commands which would at least
allow the facilities of EXEC (and nearly all of those of EXEC 2, the
exceptions being the special-case subcommand and environment statements,
which could be easily added: perhaps in a more general form).

Note that the choice of kevuords is fairly arbitary: as noted earlier,
there are certainly arguable alternatives to most of them.

In the following diagrams, symbols (words) in capitals denote
keyuords, other words (such as 'expression') denote a collection of
symbols as defined above. Note however that the keywords are not case
dependent: the symbols "if", "If" and "iF" would all invoke the command
shown below as "IF".

The characters < and > delimit optional parts of the commands.

IF expression THEN statement <ELSE statement>

If the expression evaluates to the single character '1' then the
statement following the THEN is executed. For any other result, the ELSE
statement is executed.

Note that 'statement' may include a Do Group (list of statements).

D0 <loop-condition>»; statement-list EHND

where loop-condition is: WHILE expression
or: UNTIL expression
and statement-list is any list of statements

If no leoop-condition is given, then the statement-list will be
executed once.

Otharwisa the expressicen is evaluated, and the statement-list will be
repeatedly executed either While the expression='1', or Until the
expression='1",



SELECT expression; when-list <OTHERWISE statement> END

where when-list is: 1 or more when-clause
and when-clause is: WHEN expression; statement

The expression following the SELECT is evaluated. Each expression
following a WHEMN is evaluated in turn and compared with the first
expression: if identical, the following statement 1is evaluated and
control will pass to the END.

If none of the WHEN expressions match, control will pass to the
statement following OTHERWISE. In this situation, the absence of an
OTHERWISE will cause an error.

QUEUE expression

The string resulting from expression will be stacked FIFO.

PUSH expression

The string resulting from expression will be stacked LIFO.

PULL symbol-chain

Where symbol-chain is a list of symbols separated by blanks
or operators.

The current top-of-stack will be read as one string. It will then be
parsed according to the normal rules, and tokens assigned to the symbols
given in sequence. This contextually declares the symbols given to be
variables.

If there are less symbols in the symbol-chain than there are tokens in
the string; the final symbol will have the remainder of the input string
assigned to it as a single unedited string.

Thus in the limiting case of there only being one symbol specified, it
will be assigned the entire input string.

The function of the operators in the symbol chain is to force
synchreonisation between the input tokens and the symbols given. In the
obvious CMS-like example, if the input string is: 'AAA BBB (CCC', and the
symbol chain is 'Fn Ft Fm (01' then the two chains will be synchronised at
the '(', and the variable 'Fm' will have the value "' (null).

The REX variable 'N' will be set to the number of tokens or strings
assigned values in the PULL command.



SAY expression

The string resulting from expression

is displayved (or spoken, or
typed, etc) to the user via whatever channel is available.

EXIT

expression

The expression is converted to a number,

and execution is terminated
with the number being used to set the returncode.

RETURN expression

The expression is PUSHed onto the stack, and execution is terminated
with returncode set to zero.

TRACE expression

The appropriate action is taken according to the value of expression:
YON? - all statements are traced
"ERROR?

- host commands resulting in non-0 returncode are traced
anything

else - no statements are traced

ERROR statement

If any following command returns a non—zero

returncode, the given
statement (which may be Do—End, etc) will be executed.



4. Built in functions and variables.

Since REX can include functions directly in expressions, the need for
built-in functions in reduced. The more complicated ones (such as SUBSTR
and INDEX) would probably not be included in an initial implementation.
Even "DATATYPE' could be initially implemented as an external routine.

Certain symbols will have predefined meanings = these are a
conventional selection.

BLANKS A full length string of blanks

DATE Current Date

N Number of symbols assigned values in the last PULL

NL The '"New line' character (EBCDIC X'15')

Q '1' if there is anything in the queue (Stack), else '0'
RC ) Return code from last host command

RETCODE)

TIME Current Time



5. Goto's and labels.

A GOTO statement and its corresponding labels are obvious omissions in
the language as defined above. There is no reason why labels (symbol
followed directly by ':') and a "GOTO expression" should not be
implemented.

Thoughts on the desirability of this are solicited from the reader,
though the author feels they should probably be added, as the "line of
least user resistance'.



6. Rescanning and arravs.

EXEC and EXEC 2 both allow a partial rescanning facility to allouw
subscripted variables to be manipulated. This is one of the problem areas
in REX.

Arrays can be easily simulated with a SUBSTR function, or with
specially written array functions, however as REX does not permit
pseudo-variables, this is clumsy.

An associated problem is due to the simplified parameter handling:
since we do not have the variables &l1...2&n, certain operations (such as
scanning the argument list for keywords) are difficult. A WORD(n) function
would solve this problem fairly neatly.

Alternative solutions include:

a) a 'concatenate and rescan' operator to specifically handle
subscripts (messy).

b) built in array handling (implies some form of Declare statement)

c) an "REX' command, to execute the given string as though it were
a one-record REX program. (Powerful).

What are your thoughts?



7. Example EXEC's for CMS using REX.

ADDR EXEC

/% Displays full address and name for nicknames specified */

Do until rest="'";
Pull Nick Rest;

If n=0 | Nick="?"' then /% tell %/ do;

Say '"Correct form: ADDR namel <name2 <name3

nl
nl
nl
nl

wesimin B B

"ADDR searches your rmsg file for the specified nickname.'
'If it finds the name, it displays the actual system and userid’
'of the user. If the name is not found, it checks for a local’!

nl 'userid with the same name.';
/¥ Multiple help for multiple ?'s !! ¥/

end;

else /% we have a nickname ¥/ do;
Push HT;

STATE Hick DISTRIB ¥;

Push RT;

If RC=0 then Say nick is a distribution list;
else /¥ not a list ¥/ do;
SCANRMSG nick;
rr=rc; /¥ save ¥/
FINIS * RMSG ¥;
if rr=0 then do;
/% some data was stacked ¥/
Pull nn node uid via nl n2 n3 n& n5;
if uid='" then say
Nick is the nickname for the local user node;
else say

Hick is the nickname for nl n2 n3 n% n5 (uid at node);
end;

else /¥ nothing was stacked, might be a local userid ¥/ do;
CPCOMM TRANSFER CL 1 FROM MNick;
Pull; Pull; /% clean stack after CPCOMM %/
If RC=0 then say Nick is a local VM id;
else say Nick is an unknown name;
end;
end /¥ we had a nickname %¥/;
if rest-='" then push rest;
end /7% until rest="'"' %/;



SEND EXEC (from the EXEC 2 documentation):

7% Send file to a local user ¥/
Pull name fn ft fm;
if name=""' | name='?" then do;
say 'Command is: SEND User Filename Filetype <Filemode>';
exit 100;
end;
if n<3 | n>4 then do; /% Check number of arguments ¥/
say Bad SEND command;
exit 101;
end;
if fm=""' then fm="%"; /% assume ANY if no mode given ¥/
CP SPOOL PUN name CLASS A;
if rc~=0 then do; /¥ check SPOOL worked %/
say name is not a valid userid;
exit 102;
end;
PUNCH Fn Ft Fm;
if re~=0 then do; /% check PUNCH worked ¥/
say Error rc "from "PUNCH" (while in SEND)';
nn=102;
end;
else /7% Tell recipient what has been done ¥/ do;
CP MSG Name I Have just punched you my file Fn Ft Fm;
nn=0;
end;
CP SPOOL PUN % CLASS A;
Exit nn;



/% MOVE: File Copy + Erase #/
Pull Fn Ft Fm (x nfn ntt;

It n=0
| FR="7" then do;
say
nl'Format: MOVE Fn < Ft < Fm >> < (X <Nfn <Nft >>>1*
nl* where "X" is the disk to move to.'
nl’ Any of Fn/Ft/Fm may be specified as %'
nl' Additionally, vou may specify the name the file is to be'
nl? known by on the new disk by giving "Nfn Nft". ';

exit; end;

If Fn="" then do;
Say "WHAT am I meant to move ? Hext time give me a filename!';
Exit 28;
end;

if Ft='" then Ft="%"; 3if Fm=""' then Fm="%";
FINDFILE Fn Ft Fm;
If RETCODE-=0 do;
pull; /% Clean up after findfile %/
say "Nothing to move!';
exit 8;
end;
pull fn ft fm; /¥ Get fn etc to use ¥/
/% now check target */
if nfn="' then nfn=n;
if nft=""'" then nft=ft;
1T nfm="'" then do;
nfm=bigdisk();
Say Move FN FT FM to disk HFM - "(Enter NULL, MODE, or "QUIT™)';
Pull ans;
it ans='Quit' then exit;
it ans='"'" then nfm=ans;
end;

odk substr(fm,1,1};
ndk = substrinfm,1,1);
I+ NDK=0DK then do;
Say ' You may not move the file onto itself.';

Say ! HB: Source disk could be a R/0 extension of target';
Exat 323
end;

STATE NFN NFT KFM ;
IF RC-=28 then do;
if retcode~=0 exit retcode;
Say nl HFN NFT HFM "already exists: type "Y" to replace';
pull ans;
if ans -='Y' then do;
Say File not moved ;
Exit;
end;
ond;



ERROR Exit RETCODE;

FCOPY FN FT FM NFN NFT NFM;

Say NFN NFT now on disk NFM;
ERASE FN FT FM;

Say FN FT erased from disk 0DK;
Say;



