
Algorithms and Hardware Designs for
Decimal Multiplication

by

Mark A. Erle

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Computer Engineering

Lehigh University

November 21, 2008

Approved and recommended for acceptance as a dissertation in partial fulfillment of
the requirements for the degree of Doctor of Philosophy.

Date

Accepted Date

Dissertation Committee:

Dr. Mark G. Arnold
Chair

Dr. Meghanad D. Wagh
Member

Dr. Brian D. Davison
Member

Dr. Michael J. Schulte
External Member

Dr. Eric M. Schwarz
External Member

Dr. William M. Pottenger
External Member

iii

This dissertation is dedicated to Michele, Laura, Kristin, and Amy.

iv

Acknowledgements

Along the path to completing this dissertation, I have traversed the birth of my
third daughter, the passing of my mother, and the passing of my father. Fortunately,
I have not been alone, for I have been traveling with God, family, and friends.

I am appreciative of the support I received from IBM all along the way. There
are several colleagues with whom I had the good fortune to collaborate on several
papers, and to whom I am very grateful, namely Dr. Eric Schwarz, Mr. Brian
Hickmann, and Dr. Liang-Kai Wang. Additionally, I am thankful for the guidance
and assistance from my dissertation committee which includes Dr. Michael Schulte,
Dr. Mark Arnold, Dr. Meghanad Wagh, Dr. Brian Davison, Dr. Eric Schwarz,
and Dr. William Pottenger. In particular, I am indebted to Dr. Schulte for his
mentorship, encouragement, and rapport.

Now, finding myself at the end of this path, I see two roads diverging...

v

Contents

List of Tables ix

List of Figures xi

List of Acronyms xiii

Abstract 1

1 Introduction 3
1.1 Motivation for Decimal Computer Arithmetic 4
1.2 Overview of Research . 9
1.3 Significance of Research . 11
1.4 Outline of Dissertation . 13

2 Background of Decimal Computer Arithmetic 15
2.1 History of Decimal Computer Arithmetic 16

2.1.1 Decimal Numbers . 16
2.1.2 Binary Numbers . 16
2.1.3 Fixed-point Numbers . 17
2.1.4 Scaled Fixed-point Numbers 18
2.1.5 Floating-point Numbers . 19
2.1.6 Early Computer Arithmetic Systems 20

2.2 Software Support of Decimal Arithmetic 23
2.3 Processor Support of Decimal Arithmetic 27
2.4 IEEE 754-2008 Standard . 30

2.4.1 Differences Between BFP and DFP 32
2.4.2 Decimal Formats . 34
2.4.3 Rounding . 37
2.4.4 Exceptions . 38

3 Related Research 41
3.1 Decimal Encodings . 42

3.1.1 Digit Encodings . 42

vi

3.1.2 Significand Encoding . 45
3.2 Decimal Addition . 48

3.2.1 Bias, Binary Addition, and Correction 49
3.2.2 Binary Addition and Correction 52
3.2.3 Direct Decimal Addition . 53
3.2.4 Redundant Addition . 55
3.2.5 Subtraction via End-Around Carry Addition 59

3.3 Decimal Multiplication . 63
3.3.1 Digit-by-Digit Multiplication 63
3.3.2 Word-by-Digit Multiplication 67
3.3.3 Word-by-Word Multiplication 75
3.3.4 Decimal Floating-point Multiplication 76

4 Iterative Multiplier Designs 78
4.1 Fixed-point Designs . 80

4.1.1 Multiplier Employing Decimal CSAs 80
4.1.2 Multiplier Employing Signed-Digit Adders 93
4.1.3 Summary of Iterative DFXP Designs 111

4.2 Floating-Point Design . 112
4.2.1 Algorithm . 112
4.2.2 Features . 115
4.2.3 Implementation and Analysis 131
4.2.4 Summary . 134

5 Parallel Multiplier Designs 135
5.1 Fixed-point Designs . 136

5.1.1 Multiplier Employing Decimal Carry-Save Adders 136
5.1.2 Multiplier Employing Binary Carry-Save Adders 142
5.1.3 Summary of Parallel DFXP Designs 148
5.1.4 Combined Binary/Decimal, Fixed-point Design 149

5.2 Floating-point Design . 158
5.2.1 Algorithm . 158
5.2.2 Features . 161
5.2.3 Implementation and Analysis 165
5.2.4 Summary . 167

5.3 Analysis of Iterative and Parallel Designs 168

6 Conclusion 171
6.1 Summary . 172
6.2 Future Research . 175
6.3 Closing . 179

A Glossary 197

vii

B Notation 209

C Vita 215

viii

List of Tables

1.1 Successive Division of Nine by Ten [1] 6

2.1 Time Line of Early Computer Systems and Notable Events [2] 22
2.2 Software Support of Decimal Arithmetic 25
2.3 Contemporary Processor Support of Decimal Arithmetic 29
2.4 Preferred Exponent of Select Decimal Operations 34
2.5 DFP Format Parameters . 36
2.6 DFP Format Ranges . 36
2.7 Combination Field for DFP Representations 37
2.8 Rounding Mode Descriptions . 38

3.1 Select Binary-Coded Decimal Encodings 43
3.2 Some Binary-Coded Decimal Values 44
3.3 Some Signed-Digit Codes . 45
3.4 Encoding a Densely Packed Decimal Declet [3] 46
3.5 Decoding a Densely Packed Decimal Declet [3] 47
3.6 Generation of Primary Multiples from Different Multiples Sets 72

4.1 Generation of Primary Multiples from A, 2A, 4A, and 5A 88
4.2 Area and Delay of Iterative DFXP Multiplier (Decimal CSAs) 92
4.3 Complexity of Digit-by-Digit Products for Ranges of Decimal Inputs . 96
4.4 Restricted-Range, Signed-Magnitude Products 103
4.5 Restricted-Range, Signed-Digit Sums [4] (All Digits Are Decimal) . . 106
4.6 Rounding Modes, Conditions, and Product Overrides for Overflow . . 123
4.7 Area and Delay of Iterative Multipliers (DFXP vs. DFP) 134

5.1 Multiplier Operand Digit Recoding Scheme [5] 138
5.2 Area and Delay of DFXP Multipliers (Iterative vs. Parallel) 141
5.3 Multiplier Operand Digit Recoding Schemes [6] 145
5.4 Area and Delay of DFXP Multipliers (Iterative vs. Parallel) 148
5.5 Binary Multiplier Operand Booth Radix-4 Recoding Scheme 152
5.6 Area and Delay of Various Parallel DFXP Multipliers [7] 157
5.7 Area and Delay of Parallel Multipliers (DFXP vs. DFP) 166
5.8 Area and Delay vs. Pipeline Depth of Parallel DFP Multiplier 166

ix

5.9 Area and Delay of Multipliers (Iterative vs. Parallel, DFXP vs. DFP) 168

B.1 Notation and Nomenclature of DFP Entity Components and Fields . 210
B.2 Notation of Operands and Data . 211
B.3 Unary Arithmetic Operations and Symbols 212
B.4 Binary Arithmetic Operations, Symbols, and Operand Names 212
B.5 Logic Operations and Symbols . 213
B.6 Truth Tables of Logic Operations . 213
B.7 Operator Precedence . 214

x

List of Figures

2.1 Fixed-point Example . 18
2.2 Scaled Fixed-point Example . 19
2.3 Floating-point Example . 20

3.1 Generalized Flow of DFXP Addition 48
3.2 Successive Correction Example . 50
3.3 Bias and Correction Example . 51
3.4 Carry-save Addition Example . 56
3.5 Signed-digit Addition Example . 58
3.6 Generalized Flow of DFXP Multiplication 63
3.7 Generalized Design of DFXP Digit-by-digit Multiplication 65
3.8 Generalized Design of DFXP Word-by-digit Multiplication 68
3.9 Generalized Design of DFXP Word-by-word Multiplication 76

4.1 Preliminary Iterative DFXP Multiplier Design 82
4.2 Flowchart of Iterative DFXP Multiplier Using Decimal CSAs 85
4.3 Iterative DFXP Multiplier Design Using Decimal CSAs 91
4.4 Flowchart of Iterative DFXP Multiplier Using Signed-Digit Adders . 95
4.5 Example of Recoding into Signed Decimal Digits 95
4.6 Example for Iterative DFXP Multiplier Using Signed-Digit Adders . . 97
4.7 Recoder Block: (a) Single Digit, (b) n-Digit Operand 99
4.8 Digit Multiplier Block: (a) Single Digit, (b) n-Digit 102
4.9 Iterative DFXP Multiplier Using Signed-Digits Adders 109
4.10 Flowchart of Iterative DFP Multiplier Using Decimal CSAs 114
4.11 Top Portion of Iterative DFP Multiplier Design 116
4.12 Rounding Scheme . 128
4.13 Bottom Portion of Iterative DFP Multiplier Design 132

5.1 Flowchart of Parallel DFXP Multiplier Using Decimal CSAs [5] . . . 137
5.2 Partial Product Reduction Tree Employing Decimal CSAs [5] 140
5.3 Flowchart of Parallel DFXP Multiplier Using Binary CSAs [6] 143
5.4 Partial Product Reduction Tree: Radix-10 Recoding, Binary CSAs [6] 147
5.5 Flowchart of Parallel BFXP/DFXP Multiplier Using Binary CSAs [7] 151
5.6 Binary/Decimal Multiplier Operand Recoding Example [7] 152

xi

5.7 Combined Bin/Dec Partial Product Reduction Tree (33 Products) [7] 154
5.8 Split Bin/Dec Partial Product Reduction Tree (33 Products) [7] . . . 156
5.9 Flowchart of Parallel DFP Multiplier Using Binary CSAs [8] 159
5.10 Parallel DFP Multiplier Design [8] . 162

B.1 DFP Storage Fields . 210

xii

List of Acronyms

ASIC - Application-specific Integrated Circuit
BCD - Binary Coded Decimal
BID - Binary Integer Decimal
BFXP - Binary Fixed-Point
BFP - Binary Floating-Point
CLB - Combinatorial Logic Block
CMOS - Complimentary Metal-Oxide Semiconductor
CSA - Carry-Save Adder
DFXP - Decimal Fixed-Point
DFP - Decimal Floating-Point
DPD - Densely Packed Decimal
HDL - Hardware Description Language
IC - Integrated Circuit
LSB - Least Significant Bit
LSD - Least Significant Digit
LUT - Look-Up Table
MSB - Most Significant Bit
MSD - Most Significant Digit
NaN - Not-a-Number
NFET - Negative-channel Field-Effect Transistor
FET - Field-Effect Transistor
PFET - Positive-channel Field-Effect Transistor
QNaN - Quiet Not-a-Number
SNaN - Signaling Not-a-Number
XS3 - Excess-3 binary coded decimal

xiii

Abstract

Although a preponderance of business data is in decimal form, virtually all floating-

point arithmetic units on today’s general-purpose microprocessors are based on the

binary number system. Higher performance, less circuitry, and better overall error

characteristics are the main reasons why binary floating-point hardware (BFP) is

chosen over decimal floating-point (DFP) hardware. However, the binary number

system cannot precisely represent many common decimal values. Further, although

BFP arithmetic is well-suited for the scientific community, it is quite different from

manual calculation norms and does not meet many legal requirements.

Due to the shortcomings of BFP arithmetic, many applications involving fractional

decimal data are forced to perform their arithmetic either entirely in software or with a

combination of software and decimal fixed-point hardware. Providing DFP hardware

has the potential to dramatically improve the performance of such applications. Only

recently has a large microprocessor manufacturer begun providing systems with DFP

hardware. With available die area continually increasing, dedicated DFP hardware

implementations are likely to be offered by other microprocessor manufacturers.

This dissertation discusses the motivation for decimal computer arithmetic, a brief

history of this arithmetic, and relevant software and processor support for a variety

of decimal arithmetic functions. As the context of the research is the IEEE Standard

for Floating-point Arithmetic (IEEE 754-2008) and two-state transistor technology,

1

descriptions of the standard and various decimal digit encodings are described.

The research presented investigates algorithms and hardware support for decimal

multiplication, with particular emphasis on DFP multiplication. Both iterative and

parallel implementations are presented and discussed. Novel ideas are advanced such

as the use of decimal counters and compressors and the support of IEEE 754-2008

floating-point, including early estimation of the shift amount, in-line exception han-

dling, on-the-fly sticky bit generation, and efficient decimal rounding. The iterative

and parallel, decimal multiplier designs are compared and contrasted in terms of their

latency, throughput, area, delay, and usage.

The culmination of this research is the design and comparison of an iterative DFP

multiplier with a parallel DFP multiplier. The iterative DFP multiplier is significantly

smaller and may achieve a higher practical frequency of operation than the parallel

DFP multiplier. Thus, in situations where the area available for DFP is an important

design constraint, the iterative DFP multiplier may be an attractive implementation.

However, the parallel DFP multiplier has less latency for a single multiply operation

and is able to produce a new result every cycle. As for power considerations, the fewer

overall devices in the iterative multiplier, and more importantly the fewer storage

elements, should result in less leakage. This benefit is mitigated by its higher latency

and lower throughput.

The proposed implementations are suitable for general-purpose, server, and main-

frame microprocessor designs. Depending on the demand for DFP in human-centric

applications, this research may be employed in the application-specific integrated

circuits (ASICs) market.

2

Chapter 1

Introduction

To set the stage for this dissertation, the motivation for research in decimal com-

puter arithmetic is discussed. This takes the form in this chapter as a series of

observations regarding the relevance and timeliness of decimal computer arithmetic

and an account of the inabilities of binary computer arithmetic and the insufficiencies

of decimal software solutions. With an argument for hardware support of decimal

computer arithmetic having been made, an overview of the research to be presented

in this thesis is described. The significance of this research is then advanced, followed

by an outline of the remaining portions of the dissertation.

3

1.1 Motivation for Decimal Computer Arithmetic

The relevance and timeliness of research in the area of decimal computer arith-

metic, particularly DFP, is underscored by three significant observations. First,

there are a number of established computer languages now supporting DFP arith-

metic, including C/C++ [9], COBOL [10], Eiffel [11], Java [12], Lua [13], PERL [14],

Python [15], Rexx [16], and Ruby [17] (see Section 2.2). Second, the IEEE Standard

for Binary Floating-Point Arithmetic (IEEE 754-1985) [18] and the IEEE Standard

for Radix-Independent Floating-Point Arithmetic (IEEE 854-1987) [19] have been

merged, expanded, submitted, and approved as a new standard named the IEEE

Standard for Floating-Point Arithmetic [20]. This standard, hereafter referred to

as IEEE 754-2008, includes a comprehensive definition of DFP arithmetic (see Sec-

tion 2.4). And third, processor die area1 continues to become more affordable [21],

which allows new features to be added such as the introduction of decimal arithmetic.

Both IBM and Intel have recognized and responded to the renewed market interest

in DFP arithmetic. This is evidenced by Intel’s software support via their Decimal

Floating-Point Math Library [22] and IBM’s hardware support via their Power6 [23],

System z9 [24], and System z10 [25] microprocessors, all of which conform to IEEE

754-2008 (see Sections 2.2 and 2.3, respectively).

The primary motivation for decimal computer arithmetic is to enable users of

computing systems to achieve results from decimal operations that are the same

as if performed by hand, albeit tremendously faster. When performing a decimal

operation on a system that does not support the storage of decimal numbers, adequate

decimal datatypes, or decimal operations, the result is subject to representation error,

conversion error, and rounding (or roundoff) error. Further, using a system designed

1The higher cost in computation devices to implement decimal arithmetic in Boolean logic was
a compelling reason to adopt binary arithmetic in early computing systems, see Section 2.1.

4

for binary arithmetic to perform decimal arithmetic often leads to errors that are

difficult to diagnose.

A storage format specifically for decimal numbers is necessary as there is sig-

nificant decimal input data whose value is exact and whose conversion to a binary

representation would be inexact. Consider the value of a penny whose representation

is an infinitely repeating binary fraction. This type of error is called representation

error. Although a value such as 1
3

cannot be represented exactly as a decimal number,

this error is expected and accepted when the objective is to achieve the same results

from the computing system as if performed by hand.

Decimal datatypes are needed not only to represent decimal values accurately, but

also to enable the programmer to use a single variable for each datum and intended

operation. If an exact decimal value is stored in an adequate decimal storage format,

but is then read for use in a program and placed in an overloaded binary or decimal

integer datatype, there is the potential for conversion error. Even if values destined

for these datatypes are to be scaled to overcome this error, the use of an additional

variable for the scaling is more error-prone and presumably less efficient than using a

dedicated decimal datatype. Further, this approach limits the range of values. Thus,

to eliminate the conversion error and reduce the programming error, a DFP datatype

is needed (though a DFXP datatype is suitable in certain situations).

Without hardware support of decimal operations, rounding would need to occur

in software in order to avoid potential rounding error. This is because existing bi-

nary operations do not recognize the concept of decimal digits, and therefore, may

improperly round the data. Further, it is generally preferable to round a decimal

number to a specified number of digits, which is not a supported operation in IEEE

754-compliant BFP systems. Having hardware support of decimal operations also

has the benefit of significantly faster performance over software support [26–28].

5

To gain an appreciation of the potential for error, consider Table 1.1 from Cowlishaw [1]

which shows the results of repeatedly dividing nine by ten. Further, consider the fol-

lowing true stories involving rounding error showing how these errors can lead to a loss

of money or a loss of life. In 1981, the Vancouver Stock Exchange decided to create

an index of its equities with an initial value of 1000.000. However, due to rounding

error, over a period of 22 months the index, updated thousands of times each day

for each change in a covered equity valuation, dropped in value to 574.081 when it

should have increased to 1098.892 [29]. For those who bought and sold shares of this

index during this period, a substantial percentage of their investment was lost. And

in 1991, a Patriot Missile failed to intercept a SCUD Missile due to rounding error

related to its internal timer used for velocity and range calculations [30]. The incor-

rect time value led the Patriot missile to search for the Scud missile in an incorrect

location, ultimately leading to the death of 28 servicemen.

Table 1.1: Successive Division of Nine by Ten [1]

Decimal† Binary‡
0.9 0.9

0.09 0.089999996

0.009 0.0090

0.0009 9.0E-4

0.00009 9.0E-5

0.000009 9.0E-6

9E-7 9.0000003E-7

9E-8 9.0E-8

9E-9 9.0E-9

9E-10 8.9999996E-10

† Results using Java BigDecimal class

‡ Results using Java float datatype

6

In research presented by Tsang and Olschanowsky [31], a study of the datatypes

of over 1, 000, 000 columns in various commercial databases indicated 55% of the nu-

meric data were decimal numbers, and an additional 43% could be represented with

a decimal number. Therefore, with a preponderance of at least business data rep-

resentable with decimal numbers, a system supporting decimal arithmetic, complete

with decimal storage formats, decimal datatypes, and fundamental decimal opera-

tions, is desirable.

Toward this end, a variety of software packages that support decimal arithmetic

have been developed. Two such packages are the Intel Decimal Floating-Point Math

Library [32] and the IBM decNumber Library [33]. These and other software packages

are described in Section 2.2. Further, the continued hardware support of DFXP arith-

metic [34] and the emergence of hardware support of DFP arithmetic [23], underscore

the growing demand for decimal computation solutions.

As for the need for decimal multiplication in hardware, Wang et al. [28] expanded

upon the work in [27] and examined2 five financial benchmarks compiled with the

decNumber library and learned the percentage of execution time spent on decimal

multiplication was 1.5%, 12.5%, 13.4%, 23.1%, and 27.5%3. In addition, the decimal

divide operation, which consumed as much as 50% of the execution time in these

same benchmarks, can be efficiently implemented in hardware using algorithms that

rely heavily on multiplication [35]. Overall, the percentage of execution time spent

on decimal operations ranged from 33.9% to 93.1% for the five benchmarks.

It should be noted that not every microprocessor developer agrees on hardware

support for decimal arithmetic, similar to when hardware support for multimedia

extensions were introduced [36]. The potential speedup and percentage of execution

2Wang et al. developed four of the five benchmarks.
3Platform: Intel Pentium 4 Processor, decNumber version: 3.32

7

times presented in [26–28] are in stark contrast with Intel’s research that indicates

most commercial applications spend 1% to 5% of their execution time performing

decimal operations [37]. And in research on commercial Java workloads [38], two Java

benchmarks and one financial application written in Java exhibited 2.6%, 0.7%, and

0%, respectively of their execution time performing decimal arithmetic. Therefore,

in the opinion of Intel researchers, hardware solutions of decimal arithmetic are not

necessary at this time.

8

1.2 Overview of Research

The research presented in this dissertation is on the computer hardware multi-

plication of decimal numbers. The ideas and algorithms are based on the digits of

the decimal input data being in a binary coded decimal (BCD) form, though many

concepts are applicable to other decimal digit encodings. Decimal multiplier imple-

mentations are described for generic fixed-point environments, for which there is no

standardization, and floating-point environments, as defined in the IEEE Standard

for Floating-point Arithmetic [20] (IEEE 754-2008).

Prior to the description of these multiplier designs, a survey of decimal arithmetic

is presented. This includes a brief history of decimal computing, an overview of

current software and processor support of decimal arithmetic, and highlights of the

decimal portion of IEEE 754-2008. Then, related research is presented that includes

descriptions of both decimal digit and decimal significand encodings and an overview

of both decimal addition and decimal multiplication techniques.

The multiplier research follows, which includes the details of two iterative DFXP

implementations [39,40] along with one of these, [39], extended to support DFP mul-

tiplication [41]. Next, two parallel DFXP designs are described [5,6], along with one

of these, the Vazquez et al. multiplier [6], extended to support DFP multiplication.

Additionally, research accepted for publication [7] is presented on improvements to

a parallel, combined BFXP/DFXP multiplier presented in [6]. The parallel designs

of [5,6] are included for completeness and because Hickmann, Schulte, and I extended

the Vazquez et al. fixed-point design to support DFP [8]. Latency, throughput, area,

and delay information are presented for the multiplier designs of [5, 6, 8, 39, 41]. Fur-

ther, comparisons are made amongst the iterative fixed-point designs, amongst the

parallel fixed-point designs, and between the iterative and parallel implementations.

9

Descriptions and comparisons of the iterative and parallel DFP multiplier designs

have been accepted for publication [42] and are included as part of this dissertation.

10

1.3 Significance of Research

My research presented in this dissertation centers on six publications in which I

was the principal researcher and author [39–42] or in which I performed a significant

role [7, 8]. This research, and hence this document, is divided into iterative decimal

multiplication (both fixed- and floating-point) and parallel decimal multiplication

(both fixed- and floating-point).

I developed two unique iterative DFXP multiplier algorithms and designs. The

first design [39] contained the following novel features: decimal (3:2) counters and

decimal (4:2) compressors, fast generation of multiplicand multiples that do not need

to be stored, and a simplified decimal carry-propagate addition to produce the final

product. Then, in the design of [40], I employed a recoding scheme and signed-digits

in a new way to eliminate the pre-computation of multiples and accumulate the par-

tial products in an efficient manner. As IEEE 754-2008 was converging at this time,

I extended the fixed-point multiplier of [39] to support DFP. In so doing, I published

the first DFP multiplier compliant with what is now IEEE 754-2008 [41]. This de-

sign was novel in other aspects as well, namely a mechanism to support on-the-fly

generation of the sticky bit, early estimation of the shift amount, and efficient dec-

imal rounding. Additionally, notable implementation choices include leveraging the

leading zero counts of the operands’ signficands, passing NaNs through the dataflow

with minimal overhead, and handling gradual underflow via minor modification to

the control logic.

My work in the area of parallel DFXP multiplication followed articles by Lang et

al. [5] and by Vazquez et al. [6]. Working with Hickmann and Schulte, we extended

the fixed-point multiplier of [6] to support DFP in a manner similar to the approach

described in [41]. Our publication [8] was novel in that it presented the first parallel

11

DFP multiplier compliant with what is now IEEE 754-2008 and implemented unique

exception pass-through mechanisms to improve overall performance. A thorough in-

troduction to DFP multiplication, descriptions of the iterative DFP multiplier design

of [41] and the parallel DFP multiplier design of [8], and a comparison and analy-

sis of these designs has been accepted for publication [42]. My latest research, also

a collaboration, is regarding improvements to the parallel, combined BFXP/DFXP

multiplier design described in [6]. This work, which includes several novel mechanisms

to reduce the delay significantly, particularly of the binary multiplication path, was

recently accepted for publication [7].

The research presented in this dissertation on decimal hardware multiplication

has been used by a number of other researchers to improve or advance both decimal

multiplication and related operations. In [35] and [43], Wang et al. extended my

iterative DFXP multiplier design [39] to realize decimal division and square-root

operations, respectively. In [5], Lang et al. utilized the operand recoding scheme

described in [40], and they used decimal CSAs in a manner similar to that described

in [39]. In [6], Vazquez et al. also employed the recoding scheme described in [40].

Additionally, my research provides ideas and solutions suitable for implementation

and a foundation for further DFP multiplication research, such as decimal fused

multiply-add. Finally, the research presented on DFP rounding for multiplication

may be beneficial to those investigating other DFP operations.

12

1.4 Outline of Dissertation

The outline of this dissertation is as follows. First, an abbreviated history of dec-

imal computer arithmetic is introduced in Chapter 2. This chapter also describes the

support of decimal arithmetic currently available in numerous software and hardware

offerings. As these offerings, and my research, are greatly influenced by IEEE 754-

2008, details of this new standard are also included in this chapter. Next, an overview

of related work is presented in Chapter 3. In particular, a number of decimal digit

encodings, both non-redundant and redundant, are detailed. Additionally, the con-

cepts, terminology, and some closely related research regarding decimal addition and

decimal multiplication are described.

Following these prefatory chapters, the crux of my research is presented. Chap-

ter 4 contains descriptions of two iterative DFXP multipliers [39, 40] and details on

an iterative DFP multiplier [41], based on the design presented in [39]. Then, two

parallel DFXP multipliers are presented in Chapter 5 along with details on a parallel

DFP multiplier [8]. Note the fixed-point designs in Section 5.1 are attributable to

Lang et al. and Vazquez et al., but are included here for completeness, and because

I participated in the research to extend a design of Vazqeuz et al. to support DFP.

Section 5.1 also includes recent research on improvements to a parallel, combined

BFXP/DFXP multiplier design [7]. In both Chapters 4 and 5, analysis and obser-

vations are made between the designs, and in Chapter 5, comparisons are presented

between the iterative and parallel designs. Chapter 6 contains a summary of my

research and some proposals for future research.

Supportive information is included in the dissertation as appendices. Appendix A

contains definitions of mathematical terms, and Appendix B contains the mathemat-

ical and logical notation used throughout this dissertation. Finally, a short account

13

of the author’s educational and professional career appears in Appendix C.

14

Chapter 2

Background of Decimal Computer

Arithmetic

As this dissertation delves into hardware algorithms and implementations for dec-

imal multiplication, it is appropriate to properly describe the context of this research.

This chapter provides a brief history of binary numbers, decimal numbers, how these

numbers have been represented in computers, and notable computer systems from the

early electrical computing era. Additionally, current software and processor support

for decimal arithmetic is presented, and the standard for DFP arithmetic is described.

15

2.1 History of Decimal Computer Arithmetic

In this section, a brief history is presented of decimal numbers, binary numbers,

and the manner in which they have traditionally been represented in computer sys-

tems. Specifically, numeric values are represented as fixed-point numbers, scaled

fixed-point numbers, or floating-point numbers. These three representations are de-

scribed. Lastly, notable computer systems from the early electrical computing era are

listed along with some salient attributes.

2.1.1 Decimal Numbers

The positional base ten (decimal) numeral system originated in India around 500

A.D. [44], presumably from the fact that humans have ten digits on their hands and

feet. The Indian mathematicians developed the ten unique characters, the concept

of zero as a number, and the idea that each character has a positional value and

an absolute value within that position. The positional value of a character is ten

times the positional value of the character to its right. The Arabs adopted this

numeral system in the ninth century and propagated it in Europe. Because it was

the Arabs who introduced the Europeans to the ten numerals, the Europeans refer

the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} as Arabic numerals. However, the Arabs refer to

this set as Indian numerals. In recognition of both of these cultures, these numerals

are often referred to as Hindu-Arabic numerals.

2.1.2 Binary Numbers

The positional base two (binary) numeral system is attributed to an Indian author

in the fourth century who used short and long syllables in a mathematical manner

to represent the patterns in poetry and song. But it was not until the early 1600s

16

that Francis Bacon laid the groundwork for the general theory of binary encoding [45].

Then, in an 1854 publication [46], Boole describes the principles of what is now called

Boolean algebra. Later, in 1937, Shannon [47] proved how Boolean algebra and binary

arithmetic can be used to reduce an implementation of relays (gates) and further, how

the electrical properties of relays (gates) can be used to implement Boolean algebraic

problems.

2.1.3 Fixed-point Numbers

A fixed-point number is similar to an integer except the location of the radix

point may be other than immediately to the right of the LSD (the digit of order

base0). Further, the number of digits to the right of the radix point remains fixed. A

fixed-point number system is one in which all the operands and results have the radix

point in the same position. The number of digits used to represent both the whole and

fractional portions of the number defines the precision, p. Fixed-point numbers, for a

particular base are comprised of an integer, I, and a fraction, F . Thus, a fixed-point

number, FX, stored as a single variable, may be expressed in the following form.

FX = I.F (2.1)

Fixed-point numbers offer the maximum amount of precision for a specified mem-

ory space as all the bits are available for use as significant digits. However, the range

of a fixed-point number is limited, and therefore, a loss of precision is more likely as

compared to a scaled fixed-point number or a floating-point number. Additionally,

there are no standardized means to represent unique values such as infinity or erro-

neous data. Consider the example of Figure 2.1 which shows a loss of accuracy. The

next subsection shows how scaled fixed-point numbers can reduce the occurrence of

17

A = 024.69 fixed-point multiplicand

×B = 000.05 fixed-point multiplier

AB = 001.2345 fixed-point product with no loss of accuracy

A = 024.69 fixed-point multiplicand

×B = 000.05 fixed-point multiplier

AB = 001.23 fixed-point product with loss of accuracy (0.0045)

Figure 2.1: Fixed-point Example

loss of precision.

2.1.4 Scaled Fixed-point Numbers

To extend the range of fixed-point numbers, a system can provide a scaling variable

for each fixed-point number. The scaling variable is a radix multiplier used to indicate

the amount by which the fixed-point number is multiplied by the radix. The benefit

of this approach is that a loss of precision can often be avoided, as the “window” of

precision is adjusted by the scaling variable. Thus, for a base, b, a scaled fixed-point

number, (FX, SV), is stored as two variables and may be expressed in the following

form. Typically, the fixed-point portion of a scaled fixed-point number is an integer.

(FX, SV) = I.F · bSV (2.2)

The example in Figure 2.2 illustrates how a loss of precision may be avoided with a

scaling variable.

The drawbacks of the scaled fixed-point number are 1) the additional and separate

storage area required to contain the scale value, 2) the potential for programming error

18

(A, ASV) = (02469, − 2) scaled fixed-point multiplicand

× (B, BSV) = (00005, − 2) scaled fixed-point multiplier

(AB, ABSV) = (12345, − 4) scaled fixed-point product

Figure 2.2: Scaled Fixed-point Example

due to each number requiring two entities for its representation, and 3) there are no

standardized means to represent unique values such as infinity or erroneous data. The

next subsection shows how floating-point numbers enable a single entity to contain a

number with a sliding window of precision.

2.1.5 Floating-point Numbers

To provide a number format comprised of a single entity, as are fixed-point num-

bers, yet with extended range, similar to scaled fixed-point numbers, mathematicians

employ the floating-point number. Floating-point numbers, for a particular base, b,

are comprised of a sign, s, an exponent, E, and a significand, C. A floating-point

number, FL, may be expressed in the following form:

FL = −1s · C · bE, (2.3)

where the significand has a precision of p digits. The exponent is generally an integer,

and the significand can be an integer or a fixed-point number with an integer and

fraction. Note, the sign bit is not a requirement, as the significand could be a radix-

complement number, for example. A floating-point number system may produce a

result whose radix point is in a different location than one or both its operands. As

an example, consider the following equation.

19

A = −10 · 2469 · 10−2 floating-point multiplicand

×B = −10 · 5 · 10−2 floating-point multiplier

AB = −10 · 12345 · 10−4 floating-point product

Figure 2.3: Floating-point Example

By allowing the location of the radix point to float, a computing system can

provide results of maximum accuracy using a fixed number of digits.

2.1.6 Early Computer Arithmetic Systems

Three of the earliest electronic computers, the ENIAC [48], UNIVAC [49], and

IBM 650 [50] performed their arithmetic functions in base ten [51]. In the same era,

the EDSAC [52], EDVAC [53], and the ORDVAC [54] and its equivalent, Illiac, per-

formed their arithmetic functions in base two. Even with the advent of solid state

computers based on the two-state transistor, some computer manufacturers contin-

ued to process data in base ten by simply encoding each decimal digit in four binary

bits (e.g., binary coded decimal (BCD) with weights of 8, 4, 2, 1 or biquinary coded

decimal with weights of 5, 4, 2, 1) [55]. However, as system solutions for business

and scientific applications were generalized and the demand for faster scientific cal-

culations outpaced that of business calculations, binary arithmetic emerged as the de

facto standard.

Unfortunately, the computer platforms that adopted binary arithmetic imple-

mented their floating-point support without any noticeable collaboration. This re-

sulted in proprietary data formats, unique instructions, and different results for the

same operation [24]. Since the advancement of any technical, business, or social

20

discipline requires reproducible and consistent results from experiments and compu-

tations, a genuine standard was necessary. In 1985, the IEEE Standard for Binary

Floating-Point Arithmetic was adopted [18]. Today, all major microprocessor plat-

forms supporting floating-point arithmetic adhere to this unifying standard. More

information regarding the IEEE 754-2008 Standard appears in Section 2.4.

Table 2.1 provides a time line of select early computer systems and some notable

events in the history of modern computing. Of the systems below which supported

decimal arithmetic (IBM ASCC, ENIAC, UNIVAC, IBM 650, NEAC 2201, IBM 7030,

and IBM System/360) some supported floating-point operations (UNIVAC, though

not on the earliest machines, and IBM 650). In the next subsection, software support

of decimal arithmetic in modern programming languages is described. Following this,

processor support of decimal arithmetic is presented.

21

Table 2.1: Time Line of Early Computer Systems and Notable Events [2]

Year System or Event Base Comments

1913 analytical engine [56] decimal Torres, electro-mechanical

1938 Z1 [57] binary Zuse, electro-mechanical

1939 ABC [58] binary Atanasoff & Berry, electronic-digital

1943 Colossus [59] binary Flowers, Turing, et al., code deciphering

1944 IBM ASCC/MARK I [60] decimal Aiken, electro-mechanical

1945 ENIAC [48] decimal Eckert & Mauchly

1947 first transistor [61] Bardeen, Brattain, & Shockley

1949 EDSAC [52] binary Wilkes, first stored program machine

1951
UNIVAC I [49] decimal Eckert & Mauchly

first junction transistor [62] Shockley

1952 EDVAC [53] binary Eckert & Mauchly

1953 IBM 650 [50] decimal first mass-produced computer

1952 ORDVAC [54] & Illiac I binary first von Neumann architecture

computer commercially available

1954 first silicon transistor [63] Texas Instruments

1956 UNIVAC [49] decimal some transistor-based components

1958 first semiconductor IC [64] Kilby & Noyce (independently)

1959 NEC NEAC 2201 [65] decimal Japan’s first commercial transistor

computer

1960 UNIVAC LARC [66] decimal Remington Rand mainframe

1961 IBM 7030 (Stretch) [67] binary supported decimal

1964 IBM System/360 [68] binary Amdahl, supported decimal,

first family of computers

1964 CDC 6600 [69] binary Cray, first commercially successful

supercomputer

22

2.2 Software Support of Decimal Arithmetic

As the desire for precise decimal computer arithmetic exists, a variety of software

with decimal arithmetic support has been, and continues to be, developed to satisfy

this desire. Some computing systems offer hardware support of decimal computer

arithmetic, either as hardware instructions or hardware-assist instructions. When

available, software solutions can take advantage of the speedup achievable in hard-

ware. However, the software may not utilize the available hardware depending on the

features of the software (e.g. if it is a purely interpreted language) or the intentions of

the programmer (e.g., if portability and reproducibility across platforms is sought).

In this section, a listing of current languages offering support of decimal arithmetic

is provided.

Some prominent programming languages with primitive decimal datatypes include

Ada [70], .NET Framework (C] [71], Visual Basic [72]), COBOL [10], PL/I [73], and

SQL [74]. Beginning in 1995, Ada offered a decimal datatype as a scaled fixed-

point number with a maximum precision of 18 digits. The .NET Framework’s Sys-

tem.decimal class provides users of C] and Visual Basic (VB.NET) with a 29-digit

DFP primitive. COBOL has a 32-digit DFP datatype, and is working to incorpo-

rate a decimal datatype based on the decimal128 format defined in IEEE 754-2008

(described in Section 2.4). PL/I has had a DECIMAL FLOAT datatype since its

inception in 1964. The DECIMAL FLOAT datatype is a scaled fixed-point number

with up to 15 digits of precision. SQL has long since offered the numeric and deci-

mal datatypes as scaled fixed-point numbers (the maximum precision varies between

databases). Though not a programming language, XML [75], designed to store and

transport data, contains a precisionDecimal datatype modeled on IEEE 754-2008.

This is significant as XML-aware applications must be written in languages support-

23

ing this decimal datatype.

In addition to the aforementioned languages with primitive decimal datatypes,

there are several notable languages which adhere to the General Decimal Arithmetic

Specification [76] (GDAS) developed by Mike Cowlishaw. This specification, based on

IEEE 854-1987 [19], forms the basis of decimal arithmetic in IEEE 754-2008 [20]. The

GDAS is also standardized in ANSI X3.274-1996 (Programming Language Rexx [16]).

Languages supporting the GDAS are able to operate within the confines of IEEE 754-

2008. The following languages offer arithmetic packages conforming to the GDAS:

Eiffel Decimal Arithmetic [11], IBM C DecNumber [33], Java BigDecimal [12], Lua

decNumber [13], Python Decimal [15], and Rexx [16]. Partial conformance to the

GDAS can be found in PERL BigNum [14] and Ruby BigDecimal [17].

Table 2.2 contains a list of programming languages, scripting languages, and com-

piles which support decimal arithmetic in some manner. Languages containing dec-

imal datatypes and languages conforming to the GDAS are listed in the first two

sections of the table, respectively. The next section of the table lists the proposed

DFP extensions to the C and C++ language standards, the first C/C++ compiler

designed to support these proposed extensions, and a C math library which supports

IEEE 754-2008. The proposed DFP extensions conform to IEEE 754-2008. The

C math library [32], developed by Intel, implements the DFP arithmetic defined in

IEEE 754-2008. Its algorithms are designed specifically for operands stored in the

BID format (see Section 2.4.2). The underlying algorithms used in the Intel DFP C

Math library are described in [22,37,77].

The last section of Table 2.2 lists the compilers and programs which conform to

IEEE 754-2008 and are able to utilize the DFP hardware instructions available on the

IBM Power6, IBM System z9, and IBM System z10 platforms. These compilers can

be passed an architecture parameter to either map into C decNumber library [33] calls

24

Table 2.2: Software Support of Decimal Arithmetic

Primitive Datatypes

Ada [70] 15-digit scaled fixed-point number

.NET (C] [71], VB.NET [72]) 29-digit DFP number

COBOL [10] 32-digit DFP number

PL/I [73] 15-digit scaled fixed-point number

SQL [74] scaled fixed-point number (precision may vary)

XML [75] IEEE 754-2008

Conformance with the GDAS (able to conform to IEEE 754-2008)

Eiffel [11]

IBM C decNumber [33] based on DPD encoding (see Section 2.4.2)

Java BigDecimal [12]

Lua decNumber [13]

Python Decimal Class [15]

Rexx [16]

PERL BigNum [14] partial conformance

Ruby BigDecimal [17] partial conformance

Conformance with IEEE 754-2008

C [78] proposed extension

C++ [79] proposed extension

GCC [80] version 4.2 supports C [78] and C++ [79] proposals

Intel C DFP Math [32] based on BID encoding (see Section 2.4.2)

Conformance with IEEE 754-2008 / Utilization of Hardware DFP Instructions

GCC [9] version 4.3

IBM XL C/C++ [81] version 9

IBM Enterprise PL/I [82] release 3.7

IBM DB2 [83] version 9.1

IBM High-level Assembler [84] release 6

IBM DFPAL [85]

SAP NetWeaver [86] version 7.10

25

or DFP hardware instruction mnemonics. The DFP Abstraction Layer (DFPAL [85])

enables users of applications utilizing DFPAL to compile once and run on a variety

of IBM PowerPC systems. If the code is executing on an IBM Power6 system, then

DFP hardware instructions will be used, otherwise the C decNumber library will be

used. Processor support of DFP is described in Section 2.3.

26

2.3 Processor Support of Decimal Arithmetic

As mentioned in Section 2.1, some of the earliest programmable computer systems

offered the capability of decimal arithmetic. As the two-state transistor became the

basic building block of computing, computer systems were designed with limited or

no capability of hardware decimal arithmetic. Instead, these systems offered binary

arithmetic. This section lists some of the more recent computer systems providing

hardware support of decimal arithmetic.

In [87], a three-stage, single accumulator, variable-precision, DFP unit prototype

named Controlled-Precision Decimal Arithmetic Unit (CADAC) is described. It was

designed using existing small- and medium-scale integrated circuits controlled by a

microcontroller chip. This prototype supports some desirable high-level precision con-

trol constructs. Its operations are not pipelined; rather, each operation is performed

iteratively, two decimal digits at a time, until the desired precision is obtained. In [88],

the work in [87] is extended with a software system that supports variable-precision

decimal arithmetic. Consideration is given to the hardware necessary to support the

systems programmer, namely, exception handling, but no improvements to the actual

hardware implementation are described. In [89], a prototype processor named Bit-

slice Arithmetic Processor for Scientific Computing (BAP-SC), built on wire-wrap

boards and controlled via a parallel interface from the host computer, is described

that implements DFP add, subtract, multiply, and divide. The algorithms them-

selves are not particularly aggressive in terms of performance, but the hardware does

provide significant acceleration over pure software solutions.

As for commercial microprocessors, several offer minimal fixed-point BCD arith-

metic instructions. The Intel x86 processor series offers eight decimal instructions [90],

i.e., DAA, DAS, AAA, AAS, AAM, AAD, FBLD, FBSTD. The Motorola 68k proces-

27

sor series provides five decimal instructions [91], i.e., ABCD, NBCD, PACK, SBCD,

and UNPK. And the HP PA-RISC processor series offers two decimal instructions [92],

i.e., DCOR and IDCOR. All three of these processors have instructions to correct the

result of a binary add and binary subtract performed in a bias and correction manner

on packed-BCD data. The bias and correction scheme is described in Section 3.2.1.

Packed-BCD data is comprised of two BCD digits in each byte of the operand or

register. Additionally, the Intel x86 processors has instructions to correct binary add,

subtract, multiply, and divide on unpacked-BCD data.

More extensive support of decimal arithmetic in hardware can be found in IBM’s

mainframes, such as the S/390 [93] and System z900 [34]. Support for DFP arithmetic

can be found in IBM’s System z9 [24] and System z10 [25] mainframes, and in IBM’s

Power6 [23] server. The S/390 processor offers DFXP add, subtract, multiply, and

divide via a dedicated decimal adder employing the direct decimal addition scheme

(see Section 3.2.3). The multiply and divide instructions involve iterative additions

and subtractions controlled by millicode. The System z900 processor offers the same

core DFXP instructions but employs a combined binary/decimal adder.

The IBM System z9 is the first commercial platform to offer DFP arithmetic in

conformance with IEEE 754-2008. Over 50 DFP instructions are supported through a

combination of hardware instruction and millicode instructions. The fixed-point arith-

metic unit on the z9 processor supports binary and decimal fixed-point operations.

The unit uses the bias and correction method of add and subtract. Multiplication

and division use temporary registers to speed up the iterative process. Further infor-

mation regarding the multiplication instruction available on the IBM System z900,

Power6, System z10 machines appears in Section 3.3.2.

Recently, SilMinds corporation (www.silminds.com) has made available the licens-

ing of its synthesizable VHDL and Verilog code which performs DFP add, subtract,

28

Table 2.3: Contemporary Processor Support of Decimal Arithmetic

Limited Support

Intel x86 family [90] instructions to correct binary +, -, ×, ÷
Motorola 68k family [91] instructions to correct binary +, -

HP PA-RISC family [92] instructions to correct binary +, -

early IBM mainframes, e.g., [34, 93] firmware-assisted DFXP

Conformance with IEEE 754-2008

IBM System z9 [24] firmware-assisted DFP

IBM Power6 [23] complete DFP hardware unit

IBM System z10 [25,94] extension of IBM Power6 DFP unit

SilMinds DFPA cores [95] partial implementation (+, -, ×, ×/+, ÷, x
1
2)

multiply [96], fused multiply-add, divide, and square root in conformance with IEEE

754-2008. SilMinds has indicated it is currently working on extending its code for

use in FPGA-based accelerators. A presentation regarding their intellectual property

is available [95]. The intent of SilMinds is for customers to use its off-the-shelf code

when developing commercial processors or ASICs.

Table 2.3 contains a list of contemporary processor support for decimal arith-

metic. The first portion of the table describes platforms offering limited support of

DFXP arithmetic, while the second portion of the table lists platforms and available

intellectual property with support for DFP arithmetic.

29

2.4 IEEE 754-2008 Standard

The existence of a standard for computer arithmetic benefits the hardware devel-

oper, the software developer, and the end user. When designing a standard-compliant

design, hardware developers have confidence their solution will provide the same func-

tionality as the designs of other developers. Further, for a given standard function,

they can compare the performance of their offering against others’ to determine their

competitiveness. For software developers, a standard enables them to create code

for compliant systems which is portable and yields consistent results. For end users,

they are able to seamlessly migrate their data from one platform to the next as they

are not locked into a proprietary storage format. Additionally, end users need not

contend with idiosyncratic exception and rounding behavior among different systems.

Over the years, there have been a number of proposals regarding DFP operand

formats and arithmetic. As early as 1913 [56], while developing an electro-mechanical

design for an analytical engine, Torres proposed the concept of floating-point arith-

metic. In 1969 [97], a representation for non-normalized operands was proposed in

which the significand is an integer and the exponent represents a power of ten; both

in binary form1. Although the representation of the DFP number is reasonable, the

binary format of the significand makes the shifting of an operand (needed for a vari-

ety of operations) time consuming as this would involve a multiplication or division

by appropriate powers of ten instead of simply shifting left or right, respectively. In

1976 [98], a normalized format was proposed based on the encoding of three BCD

digits into ten bits [99] with the exponent also stored in BCD format. This proposal

was a precursor to the aforementioned BFP standard as it also includes rounding,

exceptions, and instructions. In [100], another representation for the DFP number is

1This representation is very similar to the Binary Integer Decimal (BID) storage format available
in the new IEEE 754-2008 standard.

30

proposed that exhibits very good error characteristics. However, the mantissa is bi-

nary which, as mentioned earlier, leads to slow shifting. Recognizing the importance

of extended word-lengths and DFP, IEEE 854-1987 [19] was adopted in 1987.

IEEE 854-1987 has seldom been implemented as the demand for decimal com-

puter arithmetic has been for a relatively narrow set of business calculations, and

this has been satisfied on commercial platforms. When solutions have been desired

on general-purpose platforms, the user community has accepted differing decimal

solutions utilizing a combination of software with binary fixed-point hardware, rudi-

mentary BCD arithmetic or correction hardware, or decimal fixed-point hardware.

Presumably, the end user has remained on the same platform due to their legacy

investment. Pragmatically, IEEE 854-1987 lacks a description of the storage formats

for DFP numbers. A second limitation of this standard is that it does not describe

whether operands and results are to be normalized or not. The issue of normaliza-

tion affects the arithmetic and the algorithms. These omissions may have led to its

lukewarm reception. However, with the increase in processor speeds and the decrease

in the cost of memory, two areas which advantaged binary arithmetic over decimal

arithmetic, there has been interest in developing general-purpose solutions for deci-

mal computer arithmetic. This interest, and the aforementioned absences from IEEE

854-1987, led to the inclusion of DFP arithmetic in a revised version of the IEEE

Standard for Binary Floating-Point Arithmetic, IEEE 754-1985 [18].

IEEE 754-1985 defined four formats for representing BFP numbers (including neg-

ative zero and subnormal numbers) and special values (infinities and NaNs). Further,

the standard defined a set of BFP operations for these BFP values, a set of four

rounding modes, and a set of five exceptions. Upon its approval as a standard, IEEE

754-1985 had an authorized lifespan of five years. It has since been extended several

times. In September of 2000, the IEEE Microprocessor Standards Committee spon-

31

sored the revision of IEEE 754-1985 to provide an updated standard for computer

arithmetic. As part of the revision process for IEEE 754-1985 [18], the updated stan-

dard was to improve upon IEEE 754-1985, incorporate DFP (with consideration of

IEEE 854-1987 [19]), and incorporate aspects of IEEE 1596.5 [101], the standard for

shared-data formats.

After nearly eight years years of drafting, revising, and balloting, IEEE 754-

2008 [20] was approved unanimously by the IEEE Standards Association Board in

June, 2008. The standard was published in August, 2008. IEEE 754-2008 defines five

floating-point basic number formats (three binary and two decimal) as well as binary

and decimal interchange formats. Further, the standard defines a set of five round-

ing modes, a set of five exceptions (with default and alternate exception handling),

the required support for program block attributes, and the requirements for expres-

sion evaluation. Also, a set of recommended attributes and a set of recommended

correctly-rounded transcendental functions are presented. The most significant as-

pect of the updated floating-point standard, as related to the research presented in

this dissertation, is the inclusion of DFP arithmetic and the external storage (inter-

change) formats of DFP numbers. In the remainder of this section, various aspects

of IEEE 754-2008 are described.

2.4.1 Differences Between BFP and DFP

There are several differences between BFP and DFP, with respect to the numbers

and the arithmetic. At a high level, for a given format length, DFP has a larger

exponent range, while BFP has slightly greater precision. Additionally, BFP only

defines the values, while DFP defines both the values and the representation. The

representation of decimal data are particularly important as it facilitates the shar-

32

ing/migration of data. At a lower level, DFP results have a larger relative error than

BFP results. Further, the relative error of DFP has a larger wobble than that of

BFP [102, 103]. Additionally, BFP operands and results contain normalized signifi-

cands, while DFP operands and results do not. This has the following effects. First,

when aligning significands such that digits of the same order are located in the same

physical position for add-type operations, both operands may need to be shifted.

Second, for multiply operations, if the number of significant digits in the unrounded

product exceeds the format’s precision, p, then this intermediate product may need

to be left shifted prior to rounding. Third, if an intermediate product contains p− i

essential digits, then there exists i equivalent representations of the value. Note the

i possible representations can only be realized if there is sufficient available exponent

range to allow the leading non-zero digit to be placed in the MSD position and the

trailing non-zero digit to be placed in the LSD position. For example, if p equals

5 and the operation is 32 × 1015 multiplied by 70 × 1015, then possible results are

22400× 1029, 2240× 1030, or 224× 1031 (leading zeros not shown).

Because of the possibility of multiple representations of the same value, IEEE 754-

2008 introduces the concept of a preferred exponent. The preferred exponent, PE, is

drawn from elementary arithmetic and based on the operation and the exponent(s) of

the operand(s). Table 2.4 describes the preferred exponent for some operations. Note

the preferred exponent, as described in the table, is for exact results. If the result is

inexact, the least possible exponent is the preferred exponent as this yields the result

with the greatest number of significant digits. In fact, with the exception of the

quantize and roundToIntegralExact, all operations with inexact results are required

to use the least possible exponent to yield the maximum number of significant digits.

Table 2.4 shows the preferred exponent for DFP add, subtract, multiply, divide, and

fused multiply-add. For multiplication, the preferred exponent, prior to any rounding

33

Table 2.4: Preferred Exponent of Select Decimal Operations

Operation Example Preferred Exponent

addition A + B minimum(QA, QB)

subtraction A−B minimum(QA, QB)

multiplication A×B QA + QB

division A/B QA −QB

fused multiply-add (A× C) + B minimum(QA + QC , QB)

or exceptions, is as follows. The bias needs to be subtracted avggs the result exponent

should only be biased by the amount specific to its format (see Table 2.5).

PE = QA + QB “unbiased value”

= EA + EB − bias “biased value in storage”

For example, the product of A = 320 × 10−2 multiplied by B = 70 × 10−2 is P =

22400×10−4. If an intermediate product with leading zeros and raised to the preferred

exponent has essential digits to the right of the decimal point, the significand is left

shifted while decrementing the intermediate exponent to yield a product with the

maximum number of significant digits (so long as the exponent stays in range).

2.4.2 Decimal Formats

Three fixed-width interchange formats for DFP numbers are specified in IEEE

754-2008: decimal32, decimal64, and decimal128 bits. For each format width, there

is a one bit sign field (s), a combination field (G), and a trailing significand field

(T). The number of bits in each format dedicated to s, G, and T are given in rows

two through four of Table 2.5. Additionally, Table 2.5 shows the IEEE 754-2008

34

parameters for the proposed storage formats. A well-reasoned suggestion for DFP

number parameters appears in a work by Johnstone et al. [100]. However, the choice

of precision, exponent base and range, and significand representation and encoding

ultimately approved for IEEE 754-2008, are based on the considerations and reasoning

presented by Cowlishaw et al. [104] and the Decimal Subcommittee of the committee

revising IEEE 754-1985.

Note in Table 2.5 that two sets of exponent ranges are presented. This is because

the standard defines the parameters in terms of the significand, C, in a scientific

form with range 0 ≤ C < b. An alternate view is of the significand as an integer

with range 0 ≤ C < bp, where p is the significand length, or precision, of the format.

The exponent value in a DFP entity is a non-negative binary integer, which is the

biased exponent value E shown in Table 2.5. Throughout this dissertation, either

the exponent form Q (E − bias) or E (Q + bias) is used, depending on the context.

The exponent form Q is the form of the exponent most often used when calculations

are performed by hand, while the use of E allows the reader to appreciate the full

complexity of the calculation. Table 2.6 shows the range in values for normal and

subnormal numbers in each decimal format.

The combination field in each DFP datum is encoded to indicate if the represen-

tation is a finite number, an infinite number, or a non-number (i.e., Not-a-Number or

NaN). It also contains the exponent and the MSD of the significand when the operand

represents a finite number. The combination and trailing significand fields are jointly

encoded to maximize the number of representable values or diagnostic information

(i.e., NaN payload). The combination field is w+5 bits wide and the biased exponent

is w+2 bits wide, where w is 6, 8, and 12, for the three interchange formats. Table 2.7

contains an interpretation of the combination field encoding. The trailing significand

field is a multiple of ten bits and is either encoded via the Densely Packed Decimal

35

Table 2.5: DFP Format Parameters

Format name decimal32 decimal64 decimal128

storage bits 32 64 128

sign 1 1 1

combination field 11 13 17

trailing significand 20 50 110

exponent bits 8 10 14

significand digits 7 16 34

exponent bias 101 398 6176

“Scientific form”: 0 ≤ significand value < 10

exponent −95 ≤ e ≤ 96 −383 ≤ e ≤ 384 −6143 ≤ e ≤ 6144

biased exponent 6 ≤ e + bias ≤ 197 15 ≤ e + bias ≤ 782 33 ≤ e + bias ≤ 12320

“Integer form”: 0 ≤ significand value < 10p

exponent −101 ≤ Q ≤ 90 −398 ≤ Q ≤ 369 −6176 ≤ Q ≤ 6111

biased exponent 0 ≤ E ≤ 191 0 ≤ E ≤ 767 0 ≤ E ≤ 12287

Table 2.6: DFP Format Ranges

Number decimal32 decimal64 decimal128

“Scientific form”: 0 ≤ Significand value < 10

largest normal (10− 10−6)× 1096 (10− 10−15)× 10384 (10− 10−33)× 106144

smallest normal 1× 10−95 1× 10−383 1× 10−6143

largest subn’l (1− 10−6)× 10−95 (1− 10−15)× 10−383 (1− 10−33)× 10−6143

smallest subn’l 10−6 × 10−95 10−15 × 10−383 10−33 × 10−6143

“Integer form”: 0 ≤ Significand value < 10p

largest normal (107 − 1)× 1090 (1016 − 1)× 10369 (1034 − 1)× 106111

smallest normal 106 × 10−101 1015 × 10−398 1033 × 10−6176

largest subn’l (106 − 1)× 10−101 (1015 − 1)× 10−398 (1033 − 1)× 10−6176

smallest subn’l 1× 10−101 1× 10−398 1× 10−6176

36

Table 2.7: Combination Field for DFP Representations

Special Classifications

Combination (g[0 : 4]) Combination (g[5 : w + 4]) Meaning

11111 0 || < canonical declets > quiet NaN

11111 1 || < canonical declets > signalling NaN

11110 0...0 +|− infinity

Normal Classification Using Decimal Encoding (Finite Numbers)

Combination (g[0 : 4]) Exponent (E) Significand (C)

0xxxx or 10xxx g[0] || g[1] || g[5 : w + 4] (4 · g[2] + 2 · g[3] + g[4]) || TD

110xx or 1110x g[2] || g[3] || g[5 : w + 4] (8 + g[4]) || TD

Normal Classification Using Binary Encoding (Finite Numbers)

Combination (g[0 : 4]) Exponent (E) Significand (C)

0xxxx or 10xxx g[0 : w + 1] g[w + 2 : w + 4] || T

110xx or 1110x g[2 : w + 3] (8 + g[w + 4]) || T

(DPD) algorithm [3] or as an unsigned binary integer [20] called Binary Integer Deci-

mal (BID). The multiplier designs presented in this dissertation assume the operands

are stored in the decimal64 format with DPD encoding (described in Section 3.1).

Software routines to convert between DFP values encoded using the BID format and

the DPD format are available [32].

2.4.3 Rounding

A description of each rounding mode required by IEEE 754-2008 is listed in Ta-

ble 2.8. The default rounding mode is language-defined, but is encouraged to be

round to nearest, ties to even.

37

Table 2.8: Rounding Mode Descriptions

Rounding Mode Choose representation closest to...

Round to nearest, the infinitely precise result or with even
ties to even LSD if two representations are equally close

Round to nearest, the infinitely precise result or the
ties away from zero larger of two equally close representations

Round toward +infinity but no less than the infinitely precise result

Round toward −infinity but no greater than the infinitely precise result

Round toward zero and no greater in magnitude than the
infinitely precise result

2.4.4 Exceptions

There are five exceptions that may be signaled during decimal operations: invalid

operation, division by zero, overflow, underflow, and inexact. All but “division by

zero” are possible with the multiply operation. With multiplication, the invalid op-

eration exception is commonly signaled when either operand is a signaling NaN or

when zero and infinity are multiplied. The default handling of the invalid operation

exception involves signaling the exception and producing a quiet NaN for the result.

If only one operand is a signaling NaN, then the quiet NaN result is created from the

signaling NaN. Note that any produced or propagated NaN must have each ten-bit

grouping in its trailing significand field as a defined pattern (i.e., only 1000/1024 pos-

sible combinations are defined; see IEEE 754-2008). If a NaN is in its canonical form,

as shown in Table 2.7, it is guaranteed to be propagated. Non-canonical NaNs will

be altered to realize a NaN in canonical form. If an operation is to yield a NaN and

only one of its inputs is a NaN, that operation is to produce a NaN with the trailing

significand of the input NaN. If an operation is to yield a NaN and two or more of

38

its inputs are NaN, that operation is to produce a NaN with the trailing significand

of one of the input NaNs.

The division by zero exception is signaled when an operation on finite operands

is to produce an exact infinite result. Under default exception handling, the result is

infinity with the sign being the XOR of the operands’ signs for divide or negative for

logB(0).

The overflow exception is signaled when a result’s magnitude exceeds the largest

finite number. The detection is accomplished after rounding by examining the com-

puted result as though the exponent range is unlimited. Default overflow handling, as

specified in IEEE 754-2008, involves the selection of either the largest normal number

or canonical infinity and the raising of the inexact exception. When overflow occurs,

the inexact exception, an indication essential digits have been lost, is raised because

the most significant nonzero digit in the shifted intermediate product has been shifted

off the most significant end of the register, effectively, in an effort to decrease the ex-

ponent into range. Numbers that are larger than the largest normal number (see

Table 2.6) are sometimes called supernormals. A number is only supernormal if there

is an insufficient number of leading zeros in the significand such that it cannot be suf-

ficiently left shifted to decrease the exponent into range. As an example, the largest

normal number in the decimal32 format is 9999999× 10Qmax. If 7777000× 10Qmax is

multiplied by 90000×10−5, the intermediate product is 0069993.0000000×10Qmax+2.

Since the intermediate product exponent is two greater than the maximum exponent,

and there are two leading zeros in the intermediate product, the intermediate product

can be left shifted two digit positions to decrease the exponent into range.

Under default exception handling, the underflow exception is signaled when a

result is both tiny and inexact. Tininess is when the result’s magnitude is between zero

and the smallest normal number, exclusive. The detection of tininess is to occur prior

39

to rounding, when the intermediate result is viewed as if the exponent range and the

precision are unlimited. As an example, the smallest normal number in the decimal32

format is 1000000× 10Qmin. If 7777000× 10Qmin is multiplied by 9000000× 10−9, the

intermediate product is 6999300.0000000× 10Qmin−2. However, this exponent cannot

be represented. Instead of abruptly converting this number to zero, a subnormal

number is produced by shifting the significand to the right two digit positions and

increasing the exponent by two to achieve the minimum exponent. Thus, the product

significand is 0699930× 10Qmin. By reducing the precision in this manner, underflow

occurs gradually. In the preceding example, the shifting to the right of the significand

did not result in the loss of any nonzero digits. Thus, the results are exact, albeit

subnormal, and the underflow exception is not raised. For an example of when the

underflow exception is signaled, consider the following: 7777000× 10Qmin multiplied

by 9000000× 10−13. Here, the intermediate product is 6999300.0000000× 10Qmin−6.

To achieve the minimum exponent, the significand must be right shifted and rounded2

to produce 0000007×10Qmin. Since one or more nonzero digits are “lost” to rounding,

the result is both tiny and inexact, and the underflow exception is signaled. Default

underflow handling is explained in the next subsection.

The overflow exception is accompanied by the inexact exception and the underflow

exception is accompanied by the inexact exception3. When more than one exception

is signaled and default exception handling is enabled, then default handling of both

exceptions ensues. Conversely, if alternate exception handling is enabled, then alter-

nate exception handling of only the overflow or underflow exception ensues. Overflow

and underflow are deemed more important than inexact.

2The round to nearest, ties to even rounding mode is used in this example.
3The underflow exception may or may not be accompanied by the inexact exception under alter-

nate exception handling.

40

Chapter 3

Related Research

A fundamental operation for any hardware implementation of decimal arithmetic

is multiplication, which is integral to the decimal-dominant applications found in

financial analysis, banking, tax calculation, currency conversion, insurance, and ac-

counting. As will be explained, a key component of multiplication is the accumulation

of multiplicand multiples or partial products. This accumulation involves decimal

addition. Thus, related research in the areas of decimal addition and decimal mul-

tiplication are described in this chapter. The manner in which decimal numbers are

added, and stored or otherwise manipulated for that matter, are influenced by the

encoding chosen for each decimal digit. Some encoding is necessary when decimal

numbers are represented as a string of digits, as opposed to a binary integer. Be-

cause of the importance of encodings, this chapter also covers several decimal digit

encodings and a compression technique for the external storage of DFP data.

41

3.1 Decimal Encodings

In Section 2.4, the two competing external storage formats for DFP numbers

defined in 754-2008 are described. For the BID format, the significand is stored as an

integer. In contrast, the significand in the DPD format is a compressed string of BCD

digits. As today’s computers employ the two-state transistor for both memory and

logic, the ten-state decimal digit must utilize some form of encoding (as ten is not

a power of two) when the DPD storage format is being used. This section describes

various decimal digit encodings and the Densely Packed Decimal significand encoding

defined in 754-2008.

3.1.1 Digit Encodings

Several binary encodings appear in Table 3.1. Table 3.2 shows all 16 combina-

tions of four binary bits and their meaning in the same BCD encodings of Table 3.1.

Although there are many more encodings [105], the encodings appearing in this dis-

sertation are presented in these two tables. Converting numbers stored in ASCII or

EBCDIC, two common formats, to BCD-8421 is straightforward as the four LSBs are

identical.

A common encoding, identified as BCD-8421 or just BCD, uses the binary weights

of a four-bit binary integer. One advantage of BCD numbers over binary numbers

is in entering and displaying decimal numbers. Because each digit is distinct, simple

four-bit circuits can be used for I/O conversion. BCD has been in use since the

EDVAC [53].

As can be seen in Table 3.1, the Excess-3 encoding, XS3, is the BCD encoding

biased with 3 (00112). XS3 was used on the UNIVAC I [49] to avoid all zeros when

representing a number and to benefit the addition of two numbers. This benefit

42

Table 3.1: Select Binary-Coded Decimal Encodings

Decimal Encoding Format

Value BCD[-8421] [BCD-]XS3 BCD-4221 BCD-5211 BCD-5421

0 0000 0011 0000 0000 0000

1 0001 0100 0001 0010 or 0001 0001

2 0010 0101 0100 or 0010 0100 or 0011 0010

3 0011 0110 0101 or 0011 0110 or 0101 0011

4 0100 0111 1000 or 0110 0111 0100

5 0101 1000 1001 or 0111 1000 1000 or 0101

6 0110 1001 1100 or 1010 1010 or 1001 1001 or 0110

7 0111 1010 1101 or 1011 1100 or 1011 1010 or 0111

8 1000 1011 1110 1110 or 1101 1011

9 1001 1100 1111 1111 1100

is because the six invalid combinations in BCD are bypassed during the add thus

enabling the addition to be performed with binary adders followed by a ±3 correction

(see Section 3.2). Another advantage of XS3 is that it is self-complementing. That

is, the nine’s complement, used in decimal subtract operations, is achieved by logical

inversion of each bit in the digit.

BCD-4221 is an important self-complementing code as the sum digit emerging

from a binary CSA is also BCD-4221 (when both inputs are BCD-4221), so it can be

used directly in a subsequent binary CSA. The last two codes in Table 3.1, BCD-5211

and BCD-5421, both self-complementing as well, are useful as their binary doubled

value yields BCD-4221 and BCD-8421, respectively. More details about the benefits

and uses of BCD-4221, BCD-5211, and BCD-5421 appear in Section 5.1.2.

Table 3.3 contains the signed-digit code developed by Svoboda [4]. This code, also

self-complementing, is a redundant code which allows for carry-free addition [106].

There is a cost associated with carry-free addition, namely, the conversation from a

43

Table 3.2: Some Binary-Coded Decimal Values

Binary Decimal Value

Nibble BCD[-8421] [BCD-]XS3 BCD-4221 BCD-5211 BCD-5421

0000 0 invalid 0 0 0

0001 1 invalid 1 1 1

0010 2 invalid 2 1 2

0011 3 0 3 2 3

0100 4 1 2 2 4

0101 5 2 3 3 5

0110 6 3 4 3 6

0111 7 4 5 4 7

1000 8 5 4 5 5

1001 9 6 5 6 6

1010 invalid 7 6 6 7

1011 invalid 8 7 7 8

1100 invalid 9 6 7 9

1101 invalid invalid 7 8 invalid

1110 invalid invalid 8 8 invalid

1111 invalid invalid 9 9 invalid

non-redundant code into a redundant code and vice versa. More information about

the benefit and use of redundant codes, in particular, the code of Table 3.3, appears

in Section 4.1.2.

As only ten values are represented by each of the four-bit BCD formats, approx-

imately 38% of the combinations are wasted. With the Svoboda signed-digit code,

approximately 56% of the combinations are wasted. To reduce the number of wasted

combinations, IEEE 754-2008 defines a decimal encoding scheme for the external

storage of DFP data.

44

Table 3.3: Some Signed-Digit Codes

Decimal Value Alternate Representation Svoboda [4] RBCD [107]

+7 7 out of range 0111

+6 6 10010 0110

+5 5 01111 0101

+4 4 01100 0100

+3 3 01001 0011

+2 2 00110 0010

+1 1 00011 0001

+0 0 00000 0000

–0 0 11111 unused

–1 1 11100 1111

–2 2 11001 1110

–3 3 10110 1101

–4 4 10011 1100

–5 5 10000 1011

–6 6 01101 1010

–7 7 out of range 1001

3.1.2 Significand Encoding

The decimal encoding scheme for external storage (described in Section 2.4) is

based on the Densely Packed Decimal, DPD, compression technique [3]. This tech-

nique, developed by Cowlishaw, offered an improvement in conversion delay over the

prevailing compression technique developed by Chen and Ho [99]. Via DPD encoding,

strings of three BCD digits (12 bits) are compressed into ten bits. By compressing

1,000 values (0 - 999) into 10 bits (1,024 possible values), the number of wasted com-

binations is reduced from approximately 38% to only about 2%. The following 24

combinations of 10 bits {01x11x111x, 10x11x111x, 11x11x111x} are not to be pro-

45

duced as a result of a computation operation, according to IEEE 754-2008. However,

all 1,024 combinations of 10 bits are accepted as valid for DPD decoding. The feature

of not allowing any redundancy between the encoded and decoded values eliminates

the need to store the original encoded data, as only the value of encoded data need

be preserved through a decode/encode cycle. Table 3.4 shows how three BCD digits

are compressed into ten bits, the result being called a declet. Table 3.5 shows how a

declet is uncompressed into three BCD digits. Both the encode and decode functions

can be achieved in a few CMOS gate delays. In these tables, the · and + symbols are

arithmetic multiply and add, respectively. The reader is referred to Appendix B for

a complete description of the notation used in this dissertation.

Table 3.4: Encoding a Densely Packed Decimal Declet [3]

d0[0]d1[0]d2[0] b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9]

000 d0[1 : 3] d1[1 : 3] 0 d2[1 : 3]

001 d0[1 : 3] d1[1 : 3] 1 0 0 d2[3]

010 d0[1 : 3] d2[1 : 2] d1[3] 1 0 1 d2[3]

011 d0[1 : 3] 1 0 d1[3] 1 1 1 d2[3]

100 d2[1 : 2] d0[3] d1[1 : 3] 1 1 0 d2[3]

101 d1[1 : 2] d0[3] 0 1 d1[3] 1 1 1 d2[3]

110 d2[1 : 2] d0[3] 0 0 d1[3] 1 1 1 d2[3]

111 0 0 d0[3] 1 1 d1[3] 1 1 1 d2[3]

46

Table 3.5: Decoding a Densely Packed Decimal Declet [3]

b[6, 7, 8, 3, 4] d0[0 : 3] d1[0 : 3] d2[0 : 3]

0xxxx 4 · b[0] + 2 · b[1] + b[2] 4 · b[3] + 2 · b[4] + b[5] 4 · b[7] + 2 · b[8] + b[9]

100xx 4 · b[0] + 2 · b[1] + b[2] 4 · b[3] + 2 · b[4] + b[5] 8 + b[9]

101xx 4 · b[0] + 2 · b[1] + b[2] 8 + b[5] 4 · b[7] + 2 · b[8] + b[9]

110xx 8 + b[2] 4 · b[3] + 2 · b[4] + b[5] 4 · b[7] + 2 · b[8] + b[9]

11100 8 + b[2] 8 + b[5] 4 · b[7] + 2 · b[8] + b[9]

11101 8 + b[2] 4 · b[3] + 2 · b[4] + b[5] 8 + b[9]

11110 4 · b[0] + 2 · b[1] + b[2] 8 + b[5] 8 + b[9]

11111 8 + b[2] 8 + b[5] 8 + b[9]

47

Operand Bias

(
augend

and/or

addend)

Addition

(iterative

or parallel)

Sum

Correction

Operand

Recoding

(
augend

and/or

addend)

Sum

Recoding

= optional step
 = reversible steps

 (a)
 (b)
 (
c
)
 (d)
 (e)

Figure 3.1: Generalized Flow of DFXP Addition

3.2 Decimal Addition

Figure 3.1 shows the generalized flow for decimal fixed-point (DFXP) addition,

which is described as follows. A decoding step must be performed (Figure 3.1(a)), if

one or both of the operands are in a compressed format or in a format incongruent

with the adder hardware (Figure 3.1(c)). Some common recoding and compression

schemes are presented in Section 3.1. If the format and weighting of bits are appro-

priate for the intended adder, a biasing step (Figure 3.1(b)) may still be necessary

depending on whether the adder component performs direct decimal addition or bi-

nary addition. After adding the two operands (Figure 3.1(c)), a correction step (Fig-

ure 3.1(d)) may be necessary to remove any residual bias. The final step is to encode

the result (Figure 3.1(e)), if it is to be expressed in a compressed format or a format

different from the adder output. Note the decoding and biasing steps, as well as the

correcting and encoding steps, may be combined, or performed in reverse order.

Because each operands’ ten-state digits are represented with a set of two-state

devices, there are either unused combinations or there is redundancy within the set

representing the digit. The unused or redundant combinations complicate the addi-

tion in each digit position as well as the carry generation and propagation across digit

boundaries.

48

Without increasing the number of bits used to represent the ten states beyond

the minimum of four, three approaches have been developed for decimal addition.

These are direct decimal addition, binary addition with bias and correction, and

binary addition with correction. Distinct from these approaches are those that convert

the four-bit digit encoding into five-bit digit encodings. The additional available

representations enable carry-free addition. A variety of four- and five-bit encodings

and associated adders have been developed. The different schemes are presented in

the following subsections.

3.2.1 Bias, Binary Addition, and Correction

The use of a binary adder requires each digit to be in a binary weighted form.

The addition of two decimal digits of the same order yields a sum in the range

{0, . . . , 18}1. When using a binary adder for the addition, there are four LSBs

emerging from the adder, which represent the LSD of the sum, and there is a carry

from the adder, which represents the MSD of the sum. The LSD of the sum may

actually range from {0, . . . , 15}, instead of just {0, . . . , 9}. In the case of the four

LSBs being in the range {10, . . . , 15}, the four LSBs need to be adjusted to bring

them into the valid range for a decimal digit. This can be achieved by incremented

the four LSBs by six. Also for this case, the carry needs to be changed from zero to

one to reflect a carry of ten. In the case of the carry being one and the four LSBs

being in the range {0, 1, 2}2, the sum needs to be incremented by six to adjust

the weight of the carry from 16 to 10. Thus, there are two different reasons for the

correction, but both situations are handled by the addition of six.

In the context of a binary carry-propagate adder, one may conclude a single cor-

1The range is {0, . . . , 19}, if there is a carry-in.
2The range is {0, . . . , 3}, if there is a carry-in.

49

rective step is necessary to yield the proper decimal result. However, if during the

correction step the addition of six in a particular digit position results in a carry-

out, this carry may ripple to higher-order digits. Supporting this scenario requires

successive correction steps or a second carry-propagate adder. Figure 3.2 shows how

multiple corrections are necessary. An alternative approach to remove the latter

carries is to employ a speculative approach in the following manner.

0000 1001 0101 0110 = 95610 first operand

+ 0000 1000 0100 0101 = 84510 second operand

= 0001 0001 1001 1011 = 119B16 first preliminary sum

X X : carry emerged or invalid decimal digit

+ 0000 0110 0000 0110 = 060616 first correction

= 0001 0111 1010 0001 = 17A116 second preliminary sum

X : invalid decimal digit

+ 0000 0000 0110 0000 = 006016 second correction

= 0001 1000 0000 0001 = 180110 final result

Figure 3.2: Successive Correction Example

If one speculates the sum in each digit position will exceed nine, then the former

correction step of adding six may be performed prior to the addition [105]. In so

doing, any resulting carry is now of weight 10, not 16, and only the traditional carry

propagation need be taken into account. A corrective step is still necessary in each

digit position which does not yield a carry, as this indicates the sum is actually less

than ten. The correction involves subtracting six (or adding ten), which does not

affect the next more significant digits.

The benefits of this bias and correction approach include the ability to utilize

highly optimized binary adders, the potential for re-use of existing circuitry, and the

50

possibility of supporting both binary and decimal addition with the same binary adder

hardware [108–110]. If this scheme is used in a system in which BCD is the storage

format for decimal numbers, then steps (b), (c), and (d) in Figure 3.1 are needed.

Steps (a) and (e) are also required if the BCD digits are stored in a compressed

format. An example of the bias and correction approach to perform the addition of

956 + 845 in BCD format is shown in Figure 3.3.

0000 1001 0101 0110 = 95610 first operand

+ 0110 0110 0110 0110 = 666616 biases

= 0110 1111 1011 1100 = 6FBC16

0110 1111 1011 1100 = 6FBC16

+ 0000 1000 0100 0101 = 84510 second operand

= 0111 1000 0000 0001 = 780116 preliminary sum

X : no carry

0111 1000 0000 0001 = 780116 preliminary sums

+ 1010 0000 0000 0000 = −600016 corrections

= 0001 1000 0000 0001 = 180110 final result

X : carry ignored

Figure 3.3: Bias and Correction Example

In [111], Grupe discloses a parallel adder that utilizes the bias, binary addition,

and correction approach for operands comprised of BCD digits. In the first stage of

this adder, one of the operands is either biased with six or binary complemented. The

latter is performed when the operation is an effective subtraction. In [108], Ander-

son presents a combined binary/decimal adder which generates both an intermediate

result and a precorrected result (i.e., six is added to each digit position of the interme-

diate result). Then, as the carry bit stabilizes in each digit position, it is used to select

51

the appropriate digit (non-corrected or precorrected) in each position as appropriate.

As described, the addition of a bias of six may be achieved by adding n to each

digit in the augend (addend) and 6− n to each digit in the addend (augend), where

0 ≤ n ≤ 6. As mentioned in Section 3.1, the designers of some early computers

chose n = 3. This XS3 encoding, shown in Table 3.1, is advantageous for subtraction

as the nines’ complement can be obtained by simply inverting all the bits (i.e., ones’

complement). Different from the case for BCD when the sum (difference) is selectively

corrected, with XS3 the sum (difference) is always corrected. For example, when the

digit in the intermediate sum is less than ten, three must be subtracted. And when

the digit is greater than or equal to ten, three must be added. If binary addition is

used in a system in which XS3 is the storage format for decimal numbers, or in which

XS3 is used internally, then only steps (c) and (d) in Figure 3.1 are needed. In [112],

Thompson et al. present a DFP adder employing XS3 encoding and compliant with

IEEE 754-2008.

3.2.2 Binary Addition and Correction

One may eliminate the bias step (Figure 3.1 (b)) at the expense of increasing

the delay or complexity of the correction step (Figure 3.1 (d)). This is explored

in [113] in the context of an iterative DFXP multiplier (see Section 4.1). In this

work, decimal digits are “allowed” to range from {0, . . . , 15}, called an overloaded

decimal representation. In this representation, each four-bit grouping of binary bits

corresponds to a decimal digit and has the same weights as BCD-8421 code, however,

its value can exceed ten. As the partial products are added one at a time in an iterative

manner, the carries from each digit, representing 16 times the current order, result

in the addition of a six in that digit position in the next iteration. The corrective

52

addition of six in select digit positions effectively reduces the weight of each carry from

16 to 10. At the end of the partial product accumulation, another corrective step must

be taken to bring all the invalid values into a valid decimal range of {0, . . . , 10}.
Referring to Figure 3.1 and assuming the operands are comprised of compressed BCD

digits, the binary addition and correction scheme follows steps (a), (c), (d) and (e).

In [114], Vazquez et al. presents an improvement to this scheme by selectively

speculating the addition of six. There is a single case in which the speculation may be

incorrect, which is when sum in the digit position is eight. In this case, the correction

can be achieved off the critical path, such that the overall latency of addition is not

affected.

3.2.3 Direct Decimal Addition

An alternative to using binary addition is using direct decimal addition. That

is, implementing logic which accounts for the unused or redundant combinations in

each digit position and directly generates the correct decimal digit sum and carry.

Assuming the operands are in BCD format, an adder using this approach accepts as

inputs two, four-bit BCD digits, xi and yi, along with a one-bit carry-in, ci+1[0], and

directly produces a four-bit BCD sum digit, si, and a one-bit carry-out, ci[0], such

that

(ci[0], si) = xi + yi + ci+1[0] (3.1)

where bit 0 is the MSB of the 4-bit BCD digit, and the weight of ci[0] is 10 times the

weight of si. The reader is referred to [115] for a detailed description of this approach,

which was used for example on the IBM System/360 Model 1953. The equations for

performing the direct decimal addition of two BCD digits are as follows, where si[0..3],

3This technique is also used in the multiplier described in Section 4.1.1.

53

ci+1[0], and ci[0] are the sum, carry-in and carry-out for the ith digit position.

gi[j] = xi[j] ∧ yi[j] 0 ≤ j ≤ 3 “generate”

pi[j] = xi[j] ∨ yi[j] 0 ≤ j ≤ 3 “propagate”

hi[j] = xi[j]⊕ yi[j] 0 ≤ j ≤ 3 “half-adder”

ki = gi[0] ∨ (pi[0] ∧ pi[1]) ∨ (pi[0] ∧ pi[2]) ∨ (gi[1] ∧ pi[2]) “columns 842 generate”

li = pi[0] ∨ gi[1] ∨ (pi[1] ∧ gi[2]) “columns 842 propagate”

ci[1] = gi[3] ∨ (pi[3] ∧ ci[3]) “carry out of 1’s position”

si[3] = hi[3]⊕ ci+1[0]

si[2] = ((hi[2]⊕ ki) ∧ ci[3]) ∨ ((hi[2]⊕ li) ∧ ci[3])

si[1] = (pi[1] ∧ gi[2]) ∨ (pi[0] ∧ hi[1] ∧ pi[2]) ∨ ((gi[0] ∨ (hi[1] ∧ hi[2])) ∧ ci[3]) ∨

(((pi[0] ∧ pi[1] ∧ pi[2]) ∨ (gi[1] ∧ gi[2]) ∨ (pi[0] ∧ pi[1])) ∧ ci[3])

si[0] = ((ki ∧ li) ∧ ci[3]) ∨ (((gi[0] ∧ hi[0]) ∨ (hi[0] ∧ hi[1] ∧ hi[2])) ∧ ci[3])

ci[0] = ki ∨ (li ∧ ci[3])

The ki term is active when the sum of the three MSB columns of digit i is ten or

greater (which will generate a carry). The li term is active when the sum of the three

MSB columns of digit i is eight or greater (which will propagate a carry across these

bit positions). Referring to Figure 3.1, only step (c) is necessary in this adder scheme

with the operands comprised of BCD digits, and steps (a) and (e), if the operands’

digits are stored in a compressed form.

54

3.2.4 Redundant Addition

In each of the preceding subsections, the addition techniques have been presented

under the assumption the operands are comprised of BCD digits and the result is of

the same format. However, there are encodings which allow multiple ways to represent

the same decimal digit value, and there are multiple ways to express multiple-digit

decimal words. This flexibility is generally referred to as redundancy. The benefits

of redundant representation may be twofold. Redundancy in the digits often enables

a reduction in the complexity of the digit adder. Redundancy across the digits may

reduce complexity, but depending on the manner of redundancy, it may enable carry

propagation to be avoided. Avoiding carry propagation allows for the fast addition

of multiple operands or partial products, which is necessary in a variety of multipli-

cation and division schemes and in the accumulation portion of many digital signal

processing algorithms. Further, this non-propagating addition can be performed in

constant time regardless of the number of digits in the operands.

An example of redundancy within a decimal digit is the BCD-4221 encoding (see

Table 3.1 on page 42). With this encoding, values in the range {2, . . . , 7} can be

represented in two different ways. Some examples of redundancy across decimal digits

involve using more than four bits in each digit position such that the range of values

can be extended. The extended range may allow more than one value in a particular

bit position to be represented (such as carry-save format [116]), or it may also allow

the value to be either positive or negative (signed-digit format [117]). Both of these

categories of redundancy are now discussed.

55

Carry-save Format

Consider two operands of BCD digits entering a bank of binary full adders. The

outputs of these full adders are a vector of four-bit sums and a vector of one-bit

carries. These outputs, collectively called carry-save format, are redundant as the

same value can be represented in multiple ways with these two vectors. Although

carry-save addition, as this is called, is commonly used on binary data, the concept

can be applied to decimal data. As an example of a decimal carry-save adder, consider

the decimal 3:2 counter.

The 3:2 counter accepts three decimal inputs and produces a four-bit sum and a

one-bit carry. By restricting one of the three inputs to be a one-bit carry-in signal,

then the maximum sum in a single digit position is 19 (9 + 9 + 1). Thus, the carry

out of each digit position is at most one, and therefore, only one bit is needed for the

carry bit. With this restriction on the digits in one of the input operands, successive

3:2 counters can be used to reduce multiple operands by adding one new operand into

each 3:2 stage. Figure 3.4 contains an example of a decimal 3:2 counter employing

the direct decimal addition technique.

0 1 0 1 = 10110 carry input

0000 1001 0101 0110 = 85510 first input

+ 0000 1000 0100 0101 = 84510 second input

= 0 1 0 1 = 101010 preliminary carry

+ 0000 0111 1001 0001 = 79110 preliminary sum

0001 1000 0000 0001 = 180110 non-redundant sum

Figure 3.4: Carry-save Addition Example

Carry propagation may still be avoided even if the range restriction on one input

56

is removed or more than three inputs are to be accumulated. This can be achieved

by allowing the internal carries to propagate into the next two more significant digit

positions or by allowing more than one bit to represent the carry out of each digit

position. A decimal 3:2 counter and a decimal 4:2 compressor are introduced in [39].

In [118], Kenney et al., introduce three algorithms for multi-operand addition.

Two algorithms utilize a speculative approach by biasing prior to the binary carry-save

addition, while the third algorithm performs all the binary carry-save additions first,

and then takes successive steps to convert the binary sum into a decimal sum. Because

of the speed of the binary carry-save adders, the non-speculative adder approach has

less delay and similar area to the speculative adder approaches.

Signed-digit Format

Another way in which redundancy can occur across multiple digits is with signed-

digits (Table 3.3 contains an example). With each digit having a sign associated with

it, a value can be represented in multiple ways by converting a digit’s sign, taking

the radix complement of that digit, and incrementing the next more significant digit.

Additionally, the encodings of the signed-digits may have redundancy as well.

In [119], Avizienis formalizes the class of signed-digit representations for any inte-

ger radix r. This research stood in contrast to the then contemporary methods [120]

of redundant representations employing “stored carries or borrows” (analogous to the

aforementioned carry-save format). In [4], a five-bit encoding is presented which rep-

resents the range of decimal numbers {−6, . . . , + 6}. Converting from BCD to this

encoding, and vice versa, requires only a couple gate delays. There is redundancy

within each decimal digit position, and there are invalid combinations. Changing the

sign of the digit involves a simple logical inversion of each bit. In [107], a four-bit

encoding, called RBCD, is presented which represents the range of decimal numbers

57

{−7, . . . , + 7}. The string “1000” is an invalid combination. The remaining fifteen

combinations represent unique values (i.e., there is no redundancy within each deci-

mal digit position). In contrast to Svoboda encoding, changing the sign of an RBCD

digit involves taking the two’s complement. Both the Svoboda encoding and RBCD

are shown in Table 3.3 on page 42. Figure 3.5 contains an example of the addition of

two Svoboda signed-digit numbers.

0000 1001 0101 0110 = 95610 first operand

= 00011 11100 10010 10011 = 1164

0000 1000 0100 0101 = 84510 second operand

= 00011 11001 01100 01111 = 1245

00011 11100 10010 10011 = 1164 first operand

+ 00011 11001 01100 01111 = 1245 second operand

= 00110 11001 11111 00011 = 2201 signed-digit sum

00110 11001 11111 00011 = 2201 signed-digit sum

= 0001 1000 0000 0001 = 180110 non-redundant sum

Figure 3.5: Signed-digit Addition Example

After all the operands or partial products are accumulated to produce an interme-

diate result in carry-save form or signed-digit form, a single carry-propagation is all

that is generally necessary to convert the redundant representation of the sum into

a non-redundant sum. One advantage of the decimal carry-save format over signed

decimal digits, is when the carry vector is comprised of single-bit in each digit posi-

tion, the final carry-propagate adder can be simplified. Another advantage, if direct

decimal addition is used in the carry-save adder, is that no conversion of the operands

is necessary prior to entering the carry-save adder.

58

Both the carry-save format and the signed-digit format have been used to re-

duce the cycle delay or the overall latency of decimal multiplication. Decimal carry-

save addition is employed in the multiplier designs presented in Subsections 4.1.1

and 5.1.1. Binary carry-save addition is employed in the multiplier design of Sec-

tion 5.1.2. Decimal addition using signed-digits is utilized in the multiplier design

described in Section 4.1.2.

3.2.5 Subtraction via End-Around Carry Addition

A straightforward method of subtraction entails the generation of the radix com-

plement of one of the significands, the addition of this complemented significand with

the other significand, and in the absence of a carry-out, the possible radix complement

of the difference. For the last step, the inverse of the carry may be brought end-around

and added into the LSD position of the difference (after performing diminished-radix

complementation). The shortcoming of this method is twofold. First, the smaller

operand is generally not known a priori and therefore either two adders are needed

or the subtraction must be performed twice. Second, if the radix complement of the

difference is needed, the addition of the inverted carry-out leads to a carry-propagate

addition.

To address these problems, subtraction can be performed via an end-around-

carry adder with some unique properties [121]. Namely, the adder has the properties

of diminished-radix complementation on either significand and integrated support for

handling the addition of the carry-out into the existing carry network. Stated another

way, the benefit of using this type of adder is its ability to support A−B and B−A

simultaneously via only diminished radix complements.

The following equations, wherein an overbar indicates a nine’s complement, evince

59

how the same addition operation can be used to realize subtraction, regardless of

which operand is larger.

A > B : A−B = A + (−B)

= A + (B + 1)

= A + B + 1 (3.2)

B > A : B − A = −(A−B)

= −(A + (−B))

= −(A + (B + 1)) (3.3)

= −(A + B)− 1

= A + B + 1− 1 (3.4)

= A + B (3.5)

It is evident from Equations 3.2.5 and 3.5 the same fundamental operation of

A + B is used regardless of which significand is larger. If A > B, Equation should

be used, and if B > A, Equation 3.5 should be used. There are two challenges to

this proposed approach. One challenge is how to determine if A > B. And the other

challenge is how to add a one to A + B to realize Equation when A > B and we

want this equation. Both of these challenges are overcome through the use an an

end-around carry adder. This adder, as with all adders, can act as a greater than

comparator; producing a carry when adding A + B and A > B. Unique to the end-

around carry adder, however, is its ability to add its carry-out back into its carry

network as a carry-in (described in the ensuing paragraphs). Thus, in a single pass

through a single adder, B can be subtracted from A, and if B > A, a carry-out

will be added back in to satisfy Equation . The following lists describes the steps to

60

performing subtraction using an end-around carry adder.

1. Use effective subtract signal to selectively complement the addend

2. Add augend to selectively complemented addend using an end-around carry

adder (i.e., using carry out as carry-in when A > B)

3. Use carry out from adder to selectively complement adder output

Obviously, an important design consideration with the end-around carry adder is

the actual handling of end-around carry. If the carry is applied as a carry-in after

the difference is determined, this carry could ripple from the LSD to the MSD. This

approach is not desirable. A better approach is to integrate the end-around carry

into the original carry generation terms. The following equations, where gi and pi are

the generate and propagate from digit i, respectively, show the familiar carries from

four digits. It is important to note that although the equations show the integration

of the end-around carry into a four-digit carry network, the approach is scalable.

c3 = g3 ∨ p3ci

c2 = g2 ∨ p2g3 ∨ p2p3ci

c1 = g1 ∨ p1g2 ∨ p1p2g3 ∨ p1p2p3ci

c0 = g0 ∨ p0g1 ∨ p0p1g2 ∨ p0p1p2g3 ∨ p0p1p2p3ci (3.6)

If the subtract operation involves only four digits, then c0 is the carry out. This carry

out, when it is added to the LSD (as described in Equation 3.2.5), will affect the

carry of a particular digit when it is able to propagate through that respective digit.

61

This effect is shown in boldface type in the following updated carry equations.

c3 = g3 ∨ p3ci ∨ p3c0

c2 = g2 ∨ p2g3 ∨ p2p3ci ∨ p2p3c0

c1 = g1 ∨ p1g2 ∨ p1p2g3 ∨ p1p2p3ci ∨ p1p2p3c0

c0 = g0 ∨ p0g1 ∨ p0p1g2 ∨ p0p1p2g3 ∨ p0p1p2p3ci

Expanding c0 in the last set of equations and reducing terms using the Boolean

equivalences x ∨ xy = x and xx = x, yields the carry equations for a four digit

end-around carry adder (the concept is extendable to larger groups of carries):

c3 = p3g0 ∨ p3p0g1 ∨ p3p0p1g2 ∨ g3 ∨ p3ci

c2 = p2p3g0 ∨ p2p3p0g1 ∨ g2 ∨ p2g3 ∨ p2p3ci

c1 = p1p2p3g0 ∨ g1 ∨ p1g2 ∨ p1p2g3 ∨ p1p2p3ci

c0 = g0 ∨ p0g1 ∨ p0p1g2 ∨ p0p1p2g3 ∨ p0p1p2p3ci

Though not shown to simplify the presentation of the equations, each boldface type

term must be ANDed with effective subtract to prevent an inappropriate increment

(as explained previously). This is accomplished by ANDing effective subtract with

the p3 term. An interesting and desirable property of the reduced end-around carry

equations is the delay to generate c3 through c1 is only modestly increased over that

of c0, which had exhibited the worst delay of the carry generations.

The end-around carry approach described was not used in the multiplier designs

presented in this dissertation. However, it is included to round out this section on

decimal addition, as the technique could be used in decimal fused multiply-add.

62

Partial

Product

Generation

(iterative or

parallel,
 a

priori
 or

on-the-fly)

Partial

Product

Accumulation

(iterative

or parallel)

Product

Recoding

Operand

Recoding

(multiplicand

and/or

multiplier)

Product

Redundancy

Removal

= optional step
 = reversible steps

 (a)
 (b)
 (
c
)
 (d)
 (e)

Figure 3.6: Generalized Flow of DFXP Multiplication

3.3 Decimal Multiplication

Figure 3.6 shows the generalized flow for DFXP multiplication. The multipli-

cation operation, for both binary and decimal radices, requires the accumulation of

multiples of the multiplicand. The accumulation may occur on a digit-by-digit ba-

sis, a word-by-digit basis, or a word-by-word basis. Decimal multiplication differs

from binary multiplication in the number of multiplicand multiples required and the

representation of digits. In binary multiplication, each non-zero binary digit in the

multiplier contributes the value of the multiplicand at the order of the respective

multiplier digit. However, in decimal multiplication, each nonzero decimal digit in

the multiplier contributes one of nine different multiples of the multiplicand (based

on the value and order of the respective multiplier digit).

3.3.1 Digit-by-Digit Multiplication

In a digit-by-digit multiplier, each digit of the multiplicand (A) is successively

multiplied by each digit of the multiplier (B). Generally, both operands are traversed

from the least significant digit to the most significant digit, as doing so reduces the

width of the adder used to accumulate the partial products. That is, the digits in the

intermediate product with less significance than the multiplier digit being evaluated

63

remain stable.

Digit-by-digit multipliers can be constructed with either a row-oriented or column-

oriented approach to the digit-by-digit product accumulations. With the row-oriented

approach, the multiplier operand is traversed one time from LSD to MSD while the

multiplicand is traversed n times (where n is the number of digits in each operand)

from LSD to MSD. Effectively, the partial products are developed and accumulated

one digit at a time. Equation 3.7 shows the multiplication of A and B in terms of

the sums of each digit-by-digit product.

A ·B =
0∑

i=n−1

0∑
j=n−1

ajbi · 10(2n−1)−(i+j) “row-oriented approach” (3.7)

With the row-oriented approach, the multiplicand has to be left and right shifted,

effectively, and the multiplier only has to be right shifted. Therefore, both a circular

shifter and a right shifter are needed. As mentioned, each partial product is created

in full, albeit one digit at a time. Since the LSD of a subsequent partial product must

be added to the previous partial product, a carry-propagate adder n + 1 digits wide

is needed. Also, the intermediate product must be shifted left and right to properly

align it with the digit-by-digit product being produced. The row-oriented approach

is shown in Figure 3.7.a.

With the column-oriented approach, the digit-by-digit products are generated and

accumulated in such a manner that the product is finalized from the LSD to the MSD

position. Thus, the shifter controlling the intermediate product only has to shift right

(or not shift at all) to align with the next digit-by-digit product being produced. Also

different from the row-oriented approach, both operands are traversed n times, being

shifted left and right as appropriate through the use of circular shifters to product the

appropriate digit-by-digit product. As the partial products are not produced in full,

64

A

circular shift

P

circular shift

addition

B

right shift

digit

multiplication

n
+1

digits wide

(a) Row-oriented Approach

carry digit

A

circular shift

P

right shift

addition

B

circular shift

digit

multiplication

log ((
 n
+1)*9)

digits wide

(b) Column-oriented Approach

carry digit

sum digit

sum digit

Figure 3.7: Generalized Design of DFXP Digit-by-digit Multiplication

65

the width of the carry-propagate adder only has to be as wide as the number of digits

needed to represent the sum of all the digits of the same weight. The width of the

adder can be expressed as dlog10((n + 1) · 9)e digits. The column-oriented approach

is shown in Figure 3.7.b.

Referring to Figure 3.6, the digit-by-digit multiplication scheme using the row-

oriented approach generates the partial products one digit at a time (Figure 3.6.b)

and accumulates the partial products in an iterative, one digit at a time (Figure 3.6.c).

The steps in Figure 3.6.a and Figure 3.6.e are necessary if the operands are comprised

of compressed BCD digits. Further, steps in Figure 3.6.a and Figure 3.6.d are neces-

sary if either or both operands are recoded to aid in the generation or accumulation

of the partial products.

The digit-by-digit multiplies can be achieved via lookup tables (LUT) or via ran-

dom logic. With a digit range of {0, . . . , 9}, there are a total of 100 input com-

binations which can result in 37 unique products. By recoding the operands using

signed-digits, the number of unique products, ignoring the sign of the product, can

be reduced. One such recoding changes the digit range to {−5, . . . , + 5}, which

reduces the number of unique products to 15 (ignoring the sign). This concept, de-

scribed in [122], is explored in a multiplier design presented in Section 4.1.2.

In [123], Larson describes a digit-by-digit LUT scheme. The multiplier operand is

traversed from least significant digit (LSD) to most significant digit (MSD) and a par-

tial product is generated for each digit in the multiplier operand. The partial product

is added along with the previous iteration’s properly shifted intermediate product via

a carry-propagate adder. In [124], Larson presents a second, faster implementation

which employs the LUT scheme just described, but replaces the carry-propagate adder

with a four-input carry-save adder. In [125], Ueda presents a LUT which accepts dig-

its from each operand and carries from adjacent LUTs. Both of these schemes, and

66

similar digit-by-digit LUT schemes, require significant circuitry and delay to generate

the digit-by-digit products, since each digit has a range of {0, . . . , 9}. Assuming

the digit-by-digit multiply and its addition to the intermediate product can be ac-

complished in one cycle, the latency of the digit-by-digit multiplier of the resultant

product is approximately n2 cycles.

3.3.2 Word-by-Digit Multiplication

To reduce the latency of digit-by-digit multiplication, a word-by-digit approach

may be used. Typically, designs using this approach iterate over the digits of the

multiplier operand from LSD to MSD and, based on the value of the current digit,

either successively add the multiplicand or a multiple of the multiplicand (i.e., a

partial product). The partial products may be generated via lookup tables or random

logic. Further, they can be generated on-the-fly or created a priori and stored.

To reduce the complexity of partial product generation or to reduce the number of

partial products to be stored, a subset of previously generated and stored multiplicand

multiples may be used to generate the partial products on-the-fly. Equation 3.8 shows

a summation of properly weighted partial products.

A ·B =
0∑

i=n−1

bi · 10(n−1)−iA (3.8)

The generation of the multiplicand multiples is shown in Figure 3.6.b, with a simplified

scheme which generates all the partial products, one of which is selected based on the

value of the multiplier digit.

Referring to Figure 3.6, a word-by-digit multiplication scheme may generate the

partial product based on a multiplier operand digit (Figure 3.6.b), add it to the

accumulated set of partial products (Figure 3.6.c), and repeat these steps for the

67

A

partial product

generation

P

right shift

addition

B

right shift

n
+1

digits wide

partial product

selection

Figure 3.8: Generalized Design of DFXP Word-by-digit Multiplication

remaining multiplier operand digits. Alternatively, all the partial products may be

generated a priori and then in a repetitive manner for each multiplier operand digit, a

partial product is selected and accumulated. The steps 3.6.a and 3.6.e are necessary if

the operands are comprised of compressed BCD digits. Further, steps 3.6.a and 3.6.d

are necessary if either or both operands are recoded to aid in the generation or

accumulation of the partial products.

Over the years, several word-by-digit multiplier designs have been proposed, in-

cluding [126–131]. These designs, also called iterative DFXP multipliers, iterate over

the digits of the multiplier and, based on the value of the current digit, either suc-

cessively add the multiplicand or a multiple of the multiplicand. The multiples are

68

generated via LUTs or developed using a subset of previously generated multiples.

All of these designs are DFXP multipliers.

To gain an appreciation of the latency of a word-by-digit multiplication scheme,

consider Bradley et al.’s design [132] which requires up to nine cycles per multiplier

digit with none of the multiples being stored. In an effort to improve performance,

the leading zeros of both operands are counted, the shorter operand is made the

multiplier, the iterative multiply is performed, and the leading zeros prefixed onto

the product. Although the mechanism for addition is not described, it involves carry-

propagation. Assuming decimal carry-propagate addition can complete in a single

cycle, the designs employing an iterative addition approach require an average of 5n1

cycles, where n1 is the number of significant digits in the smaller of the two operands.

The required number of multiplicand multiples is at most eight. If the multiplier

operand digit is zero, no value is added to the intermediate product. If the multi-

plier operand digit is one, then the original multiplicand (or single) is added to the

intermediate product. Hence, eight multiples are needed (i.e., double, triple, quadru-

ple, quintuple, sextuple, septuple, octuple, and nonuple). To reduce the number of

necessary multiples, the multiplier operand may be recoded into a redundant form

such that the magnitude of each digit is less than nine. For example, if the multi-

plier operand is recoded into a range of {−5, . . . , + 5}, then only four multiples

are required (i.e., double, triple, quadruple, and quintuple) along with their additive

inverse. This approach was first described by Cauchy [117] in 1840. The optional

multiplier operand recoding step is shown in Figure 3.6.a.

As described in Section 3.1, a common representation for the operands’ deci-

mal digits is BCD. In order to reduce the complexity and/or latency of generating

the multiplicand multiples and ultimately, the accumulation of partial products, the

multiplicand operand may be recoded as well. This optional multiplicand operand

69

recoding step is shown in Figure 3.6.a. With recoding of the multiplicand or the mul-

tiplier comes negative digits, and the overhead of producing the additive inverse must

be taken into account. Depending on the encoding chosen for the digits, the additive

inverse may simply involve the logical inverse of each bit (single inverter delay), or it

may involve an addition or subtraction (multiple gate delay).

As Chapter 4 focuses on research involving word-by-digit multiplier design, some

introductory concepts are now presented. A straightforward approach to iterative

DFXP multiplication is to iterate over the digits of the multiplier, B, and based

on the value of the current digit, bi, successively add multiples of A to a product

register [105]. The multiplier is typically traversed from least significant digit to most

significant digit, and the product register is shifted one digit to the right after each

iteration, which corresponds to division by 10. This approach allows an n + 1-digit

adder to be used to add the multiples of A to the partial product register and one

product digit to be retired each iteration. The multiples 2A through 9A can be

calculated at the start of the algorithm and stored along with A to reduce delay. The

equation for this iterative approach to decimal multiplication is as follows:

Pi+1 = (Pi + A · bi) · 10−1 (3.9)

where P0 = 0 and 0 ≤ i ≤ n − 1. After n iterations, Pn corresponds to the final

product P , albeit with the decimal point in the wrong location4. The most notable

shortcomings of this approach are the significant area or delay to generate the eight

multiples, the eight additional registers needed to store the multiples if they are not

generated on-the-fly, and the delay to perform all these carry-propagate additions.

4The equation is shown in this manner as the proposed hardware implementations perform a
right shift of the previous iteration’s partial product. Ultimately, Pn needs to be left shifted to yield
an integer result.

70

An alternative to storing all the multiples (called primary multiples or a primary

set) is storing a reduced set of multiples. The ideal situation is to be able to quickly

generate the reduced set of multiples and to easily generate the complete set of pri-

mary multiples from the stored multiples. If the reduced set of multiples can be

generated from the multiplicand without any carry propagation, then this would al-

low for fast generation. Two properties are needed for the generation of multiplicand

multiples without carry propagation. First, each digit position must be able to ab-

sorb any carry from the next less significant digit position. Second, a carry must not

propagate beyond the next more significant digit. Two of the multiplicand multiples

can be generated very easily when the digits are stored in BCD form, and therefore,

are potential candidates for a reduced set of multiples. Specifically, generating the

double and the quintuple of the multiplicand is straightforward as neither involves a

carry propagation beyond the next more significant digit position [105].

When any BCD digit is doubled, its LSB initially becomes zero. Thus, when

a carry-out of one occurs (for digit values in the range {5, . . . , 9}), it does not

propagate beyond the next more significant digit’s LSB, which is always zero. For

quintupling, note that any BCD digit whose value is odd will initially become a five

(‘0101’), and any digit whose value is even will initially become a zero. Further, any

digit whose value is one will not produce a carry-out, and any digit whose value is

greater than one will produce a carry-out in the range {1, . . . , 4}. Thus, when a

carry-out does occur, it will not propagate beyond the next more significant digit,

which has a maximum value of five before the addition of the carry.

As an example of how a reduced set of multiplicand multiples can be used to

generate all the multiples, suppose the 2A, 3A, 4A, and 8A multiples are precalculated

and stored along with A. Then all the other multiples can be obtained dynamically

with, at most, a single addition (see second column of Table 3.6, where b′i, b′′i , and b′′′i

71

represent factors of multiplicand multiples). This reduced set of multiples is called a

secondary set, as no more than two members of the set need to be added to generate

a missing multiple. Another reduced set of multiples is A, 2A, 4A, and 8A [130].

Advantages of this set include one fewer multiple and a one-to-one correspondence

with the weighted bits of a BCD digit. That is, the bits in each BCD digit of the

multiplier operand can be used directly to select the appropriate multiple(s). A

disadvantage of this set is the increase in delay or area needed to handle the addition

of three multiples. Three multiples are needed to create the 7A multiple (third column

of Table 3.6). Because of this, the set A, 2A, 4A, and 8A is called a tertiary set of

multiples. If the −A multiple were available, then a secondary set could be formed

as A, −A, 2A, 4A, and 8A. The primary multiples can be obtained from this set as

shown in the last column of Table 3.6. The 5A multiple can be used in addition to,

or in replacement of, the −A multiple to produce another secondary set.

Table 3.6: Generation of Primary Multiples from Different Multiples Sets

Reduced Set of Multiples

Multiplier Digit A, 2A, 3A, 4A, 8A A, 2A, 4A, 8A A,−A, 2A, 4A, 8A

(decimal value of bi) b′i + b′′i b′i + b′′i + b′′′i b′i + b′′i

0 0 + 0 0 + 0 + 0 0 + 0

1 0 + 1 0 + 0 + 1 0 + 1

2 0 + 2 0 + 2 + 0 0 + 2

3 0 + 3 0 + 2 + 1 4 + -1

4 0 + 4 4 + 0 + 0 4 + 0

5 4 + 1 4 + 0 + 1 4 + 1

6 4 + 2 4 + 2 + 0 4 + 2

7 4 + 3 4 + 2 + 1 8 + -1

8 8 + 0 8 + 0 + 0 8 + 0

9 8 + 1 8 + 0 + 1 8 + 1

72

Subtraction via the −A multiple can be accomplished using the ten’s complement

form or the nine’s complement form. Since the result of the addition of the secondary

multiples involving −A will always be greater than zero, there is no difference between

these two approaches. That is, the nine’s complement form is obtained by subtracting

each digit from nine (“1001”) and adding the carry that would occur into the LSD.

And the ten’s complement form is obtained by developing the nine’s complement form

and adding one into the LSD; note that the carry that would occur is to be ignored.

At first glance, it appears a carry-in is needed to add one to the LSD when one of

the secondary multiples is −A (to perform ten’s complement). But since one of the

other partial multiples is going to be 4A or 8A when −A is chosen, and the LSB of

4A and 8A is zero, it is acceptable and desirable to inject the one into this location.

Thus, there is no carry-in.

If secondary multiples are used, Equation 3.9 is replaced by the following equation

to describe the iterative portion of a decimal multiplier:

Pi+1 = (Pi + A · b′i + A · b′′i) · 10−1 (3.10)

In Equation 3.10, A · b′i and A · b′′i are secondary multiples which together equal the

proper primary multiple (i.e., A · b′i +A · b′′i = A · bi). Although the secondary multiple

approach reduces the delay and/or area and register count, it introduces the overhead

of potentially one more addition in each iteration.

To appreciate the overhead of the additions to accumulate the partial product,

consider the following. Assuming decimal carry-propagate addition can complete in a

single cycle, a multiplier employing an iterative addition approach requires an average

of 5n1 cycles, where n1 is the number of significant digits in the smaller of the two

operands. The number of cycles needed to accumulate the partial products can be

73

reduced in the ideal case to n1, if the multiplicand multiples are generated a priori.

Consider the following designs from IBM.

In a recent publication [34], Busaba et al. describe the algorithm and hardware

design for the fixed-point decimal multiplier on the IBM System z900. The goal of that

design is to implement decimal multiplication in the fewest cycles with the hardware

minimally modified to support a small set of DFXP operations. Thus, an existing

binary adder was extended into a combined BFXP/DFXP adder capable of adding

16 BCD digits. Using a register file to store multiples of the multiplicand. The DFXP

multiplication instruction requires an average of 11 + 2.4n1 cycles when the result is

15 digits or less and 11 + 4.4n1 cycles when the result is more than 15 digits. In the

IBM Power6 [23] and System z10 [25] processors, a dedicated decimal arithmetic unit

exists which supports DFP arithmetic in conformance with IEEE 754-2008. The goal

of this design, originally developed for the Power6 and then extended to support the

z/Architecture instruction set, was to consume as small an area as possible with as

much of the IEEE 754-2008 DFP instructions implemented in hardware. The DFP

multiplication instruction requires 19+n cycles when n = 16 digits and 21+2n cycles

when n = 34 digits. All of these designs have a decimal carry-propagate adder on the

critical path in the iterative portion of the multiply algorithm.

As described in Subsections 3.2.4 and 3.2.1, the cycle time in the accumulate por-

tion of the algorithm can be reduced by replacing the carry-propagate adder with a

carry-save adder. In both [126] and [130], carry-save adders are employed. As an

example, Ohtsuki’s design [130] performs two binary carry-save additions and three

decimal corrections in each iteration of partial product accumulation. In Section 4.1,

several alternative word-by-digit multiplier designs are presented which take advan-

tage of both the secondary multiple concept and the carry-save addition concept.

74

3.3.3 Word-by-Word Multiplication

Further reductions in latency can be achieved by performing word-by-word multi-

plication. Although this scheme became feasible for hardware implementation quite

some time ago for binary multiplication (see [133] and [134]), it has only recently be-

come feasible for decimal multiplication. Admittedly, a decades-old publication does

exist which depicts the arrangement needed for word-by-word multiplication [135].

However, this design, by Pivnichny, presents an array of digit-by-digit multipliers

and associated carry-save adders which is prohibitively expensive in both area and

wiring.

Recently, two papers have been published describing word-by-word, or parallel

DFXP multiplication. Lang and Nannarelli’s parallel design [5] recodes each multi-

plier operand digit into two terms, {0, 5, 10} and {−2, . . . , + 2}. In so doing, only

the decimal double and quintuple of the multiplicand are required, each of which is

obtained quickly as there is no carry propagation [105]. This recoding scheme leads

to two partial products for every digit of the multiplier operand. The set of partial

products is reduced to two via BCD 3:2 carry-save adders (CSAs). In Vazquez et al.’s

work, a family of parallel decimal multipliers is presented based on the recoding of

the multiplicand digits into BCD-4221. This recoding enables the use of binary CSAs

for the partial product accumulation, albeit with the carry digit needing a correction

in the form of decimal doubling. Since binary CSAs are used in the partial prod-

uct accumulation step, the tree can be overloaded to support binary multiplication.

Further, three recodings of the multiplier operand are offered which trade-off the com-

plexity/delay of partial product generation against the number of partial products to

be accumulated. The recodings are {−5, . . . , + 5}, {0, 4, 8} + {−2, . . . , + 2},
and {0, 5, 10}+ {−2, . . . , + 2}. For a p-digit multiplier operand, the first recoding

75

option leads to p + 1 partial products with a relatively slow carry-propagate addition

needed to yield the decimal triple, while the last two recoding options lead to 2p

partial products with relatively fast generation of all the required multiples.

A

multiplicand

multiple

generation

P

partial product

accumulation

tree

B

2 *
 n

digits wide

n
 * (
 n
+1) digits

partial product

selection

Figure 3.9: Generalized Design of DFXP Word-by-word Multiplication

The description of the Vazquez et al. parallel DFXP multiplier design [6] is de-

ferred to Section 5.1.

3.3.4 Decimal Floating-point Multiplication

Aside from recently published papers by the author [8,41], there are several papers

presenting hardware designs of DFP multiplication [23, 25, 87, 89]. The multiplier

designs by Cohen et al. [87] and Bolenger et al. [89] are digit-serial and have long

latencies. Furthermore, the results they produce do not comply with IEEE 754-

76

2008. In contrast, the multiplier designs used on the IBM Power6 [23] and System

z10 [25] processors do conform with IEEE 754-2008. These multipliers are essentially

the same, as they use the same word-by-digit algorithm. See Section 3.3.2 for a

description of their latencies.

Two new DFP multiplier designs are presented in this dissertation. A DFP mul-

tiplier design using an iterative (i.e., word-by-digit) approach is described in Sec-

tion 4.2. And a DFP multiplier design using a parallel (i.e., word-by-word) approach

is described in Section 5.2. The two multiplier designs are compared and contrasted

in Section 5.3.

77

Chapter 4

Iterative Multiplier Designs

The multiplier designs presented in this chapter iterate over the digits of the mul-

tiplier operand and successively produce and accumulate partial products based on

multiples of the multiplicand. Because of the iterative accumulation, the throughput

of these designs is less than one multiply per cycle, i.e., a new multiply instruction

cannot start each cycle. However, the iterative nature of the algorithms implies a high

degree of hardware re-use, and therefore, these designs are considered area efficient.

Though one can “unroll” the accumulation of partial products to support a through-

put of one multiply per cycle, the overhead in hardware is quite significant. Thus,

these designs are most applicable to systems in which area is more important than

throughput. The reader is referred to Section 3.3 for an overview of the fundamental

steps of hardware multiplication.

The first multiplier design presented was published as [39] and appears in Sec-

tion 4.1.1. This design utilizes decimal carry-save addition to produce a redundant

internal form of the intermediate values during partial product accumulation. The

design [39] contained the following novel features: decimal (3:2) counters and decimal

(4:2) compressors, fast generation of multiplicand multiples that do not need to be

78

stored, and a simplified decimal carry-propagate addition to produce the final product.

The second design presented was published as [40] and appears in Section 4.1.2. This

design recodes the operands, generates each partial product on-the-fly, and utilizes

a redundant digit encoding to improve the speed of partial product accumulation.

The novelty in this design is due to the recoding the operands and the employing

of signed-digits, thereby eliminating the pre-computation of multiples and efficiently

accumulating the partial products. The iterative DFXP multiplier design employing

decimal carry-save addition was chosen as the basis for an iterative DFP multiplier

design, and the details of this DFP implementation [41] are presented in Section 4.2.

This iterative DFP multiplier, the first published design compliant with IEEE 754-

2008 [41], is novel in its mechanisms to support on-the-fly generation of the sticky bit,

early estimation of the shift amount, and efficient decimal rounding. A comparison of

the iterative DFP multiplier described in this chapter and a parallel DFP multiplier

described in the next chapter appears in [42].

79

4.1 Fixed-point Designs

The iterative multiplier designs described in this chapter employ two different

strategies yet achieve very similar latencies. Both approaches feature a reduced set

of multiplicand multiples. However, the design of Section 4.1.1 precomputes the

multiples and uses decimal CSAs to accumulate the partial products, while the design

of Section 4.1.2 generates the multiples as needed and uses signed-digit adders to

accumulate the partial products. The presented designs are compared in Section 4.1.3.

4.1.1 Multiplier Employing Decimal CSAs

Before describing the finalized multiplier design utilizing decimal CSAs, it may be

beneficial to introduce a preliminary multiplier design and speak to its shortcomings.

In Section 3.3.2, justification is provided for producing a subset of the multiplicand

multiples and then adding at most two of these multiples together to form a partial

product. For reference, Equation 3.10, representing the addition of a partial product

(A · b′i + A · b′′i) to the previous iteration’s accumulated partial product (Pi), is shown

here:

Pi+1 = (Pi + A · b′i + A · b′′i) · 10−1

Since the multiplier may need to handle operands up to 34 decimal digits in

length to support IEEE 754-2008 [20], it is unlikely a single decimal carry-propagate

addition, let alone the two additions shown in this equation, can be performed in one

cycle. A substantial improvement in delay can be obtained by using decimal CSAs

(see Section 3.2.4). Using the decimal carry-save addition approach, the equation to

represent the addition of a partial product to the previous iteration’s accumulated

80

partial product can now be expressed as two equations:

(PS ′i, PC ′
i) = PSi + PCi + A · b′i (4.1)

(PSi+1, PCi+1) = (PS ′i + PC ′
i + A · b′′i) · 10−1 (4.2)

where PSi and PS ′i are the partial product sums comprised of four-bit BCD digits

and PCi and PC ′
i are the partial product carries (one bit for each PS digit) at the

end of the ith iteration.

Figure 4.1 is a diagram of a decimal multiplier that implements Equations 4.1 and

4.2 in a single cycle. The top portion of the design, which is above the partial product

register, performs the iterative equations. The bottom portion generates and stores

the multiples of A, and produces the final product. To understand the design better,

note that the same decimal carry-propagate adder is used to generate the multiples

at the beginning of the multiplication and produce the final product at the end. As

shown, the design takes four cycles to generate the secondary multiples (2A, 3A, 4A,

and 8A), one cycle for each multiplier digit to add up all the partial products, and

one cycle to produce the final product. Thus, it has a latency of n + 5 cycles and can

begin a new multiplication every n + 5 cycles.

Note the figure for this multiplier design contains registers that are identified as

“Master/Slave”, “Master”, or “Slave”. This is because the designs are implemented

with a two-phase clock. The latches in the “Master” registers are active when the

clock is high (phase 1), and the latches in the “Slave” registers are active when the

clock is low (phase 2). Also noteworthy is the absence of selection logic on the data

inputs to the registers. (For example, in Figure 4.1, the output of the “Mid-Cycle

Register” toward the bottom of the design is fed to five different “Slave” registers.)

The selecting of the data is accomplished through the use of gated clocks. Effectively,

81

Multiplicand Register (
L1L2
)
Multiplicand Register (Master/Slave)

4:1 Multiplexor (select 0, A,
2A
,
3A
)

Decimal (3:2) Counter #1

Decimal (3:2) Counter #2

Partial Product Shift Register (Master/Slave with Reset)
 B/ Final Product Shift Register (Master/Slave)

4:1 Multiplexor (select
A
,
2A
,
4A
, PS)

4:1 Multiplexor (select
A
,
2A
,
4A
, PC)

Decimal Carry Propagate Adder

Mid-Cycle Register (Master)

Final Product Register (Slave)

2A
 Register (Slave)

3A
 Register (Slave)

4A
 Register (Slave)

8A
 Register (Slave)

0
 A

Multiplicand Register (
L1L2
)
Multiplexor Control Register (Master/Slave)

0
 4A
 8A

3A

3:1 Multiplexor (select 0,
4A
,
8A
)

A
 2A
 4A

A
 2A
 4A

2A

to
A

to
8A

to
4A

to
3A

to
2A

A

<<4

4>>

PS
i
PC
i

PC'
 PS'

PC
i
+1
 PS
i
+1

PS
i

PC
i

"0,A,
2A
,
3A
"

"0,
4A
,
8A
"

"A,
2A
,
4A
,PC"
 "A,
2A
,
4A
,PS"

"
2A
,
3A
,
4A
,
8A
,P"

P[0:
n
-1]
 P[
n
:
2n
-1]

from control logic (based on multiplier digit: b
i
)

from

control

logic

from

control

logic

iterative

portion

B

Figure 4.1: Preliminary Iterative DFXP Multiplier Design

instead of multiplexing on the data port of each latch to select between new data or

existing data, the clocks controlling the latches are selectively enabled or disabled.

In addition to reducing the delay in the dataflow portions of the design, this strategy

also reduces the power consumption.

The design of Figure 4.1 has two frequency limiting issues. First, the two decimal

82

3:2 counters in series, along with the multiplexors needed to steer the appropriate

multiples into the decimal counters, contain too much logic for a single fast cycle.

Unfortunately, simply splitting the logic into two pipeline stages is undesirable as

it doubles the number of cycles needed for the iterative portion of the algorithm.

Second, the decimal carry-propagate adder used to generate the multiples and the

final product is too slow as well. Splitting this logic into two pipes is reasonable in

this case as the overall latency only increases by three cycles. This is because the

four secondary multiples can be produced in six cycles (two additional cycles) and

the final product produced in two cycles (one additional cycle).

In the remaining subsections, a finalized multiplier design employing decimal CSAs

is presented which addresses these frequency-limiting issues. The design is an iterative

DFXP multiplier which extends previous techniques used for decimal multiplication

including generating a reduced set of multiplicand multiples [105], using carry-save

addition for the iterative portion of the multiplier [124,130], and using direct decimal

addition [115] to implement decimal carry-save addition. Novel features of the mul-

tiplier design include the use of decimal counters and compressors, fast generation

of multiplicand multiples that do not need to be stored, and a simplified decimal

carry-propagate addition to produce the final product. Referring to Figure 3.6 on

page 63, this multiplier design generates a secondary set of multiplicand multiples1

(Figure 3.6.b), iteratively accumulates the partial products (Figure 3.6.c), and then

removes the redundancy in the intermediate product emerging from the partial prod-

uct reduction tree (Figure 3.6.e) to yield the final product.

1See Section 3.3.

83

Algorithm

A flowchart-style drawing of the algorithm described in [39] appears in Figure 4.2.

After reading in the operands, the following multiplicand multiples are generated:

2A, 4A, and 5A. The 2A and 5A multiples are created directly, without carry prop-

agation, and the 4A is created by doubling the 2A multiple. The creation of the

secondary multiples occurs in the block labeled “Generate Multiplicand Multiples”

in Figure 4.2. Once the multiplicand multiples are developed, the portion of the

algorithm which iterates over the multiplier operand digits begins, as shown in the

block labeled “Iterative Portion” in Figure 4.2. This portion includes selecting the

secondary multiplicand multiples, creating the partial product in sum and carry form,

adding the partial product to the intermediate product in sum and carry form, shifting

the intermediate product one digit to the right, and producing a final product digit.

After all the partial products have been accumulated, an addition is performed to

produce a non-redundant final product (shown in the “Add to Yield Final Product”

block).

Features

As mentioned, the carry-propagate adder of Figure 4.1 used to generate the mul-

tiples and the final product is too slow for a high-frequency design. One alternative

is to generate the multiples using carry-save addition. The benefit of this alternative

is that, although the four secondary multiples are still generated in four cycles, the

removal of the carry propagation allows a much higher frequency of operation. The

drawback of this approach is that the decimal counter that implements Equation 4.3

becomes a decimal 4:2 compressor and additional registers are needed to store carry

bits. A better alternative is to generate only the 2A, 4A, and 8A multiples, for the

84

Write Result

Read Operands

Add to Yield Final Product

Generate Multiplicand Multiples

(
2A
,
4A
,
5A
)

1) Select Multiplicand Multiples,

2) Create Partial Product,

3) Add to Intermediate Product,

4) Shift Intermediate Product One Digit to the Right,

5) Produce Final Product Digit

Iterative Portion

Figure 4.2: Flowchart of Iterative DFXP Multiplier Using Decimal CSAs

following reason.

As mentioned in Section 3.3, two properties are needed for the generation of

multiplicand multiples to be digit-wise independent. Both doubling and quintupling

satisfy these requirements. So, in three gate delays, the 2A can be developed, in three

more gate delays, the 4A can be developed, and in three more gate delays, the 8A can

be developed. Depending on the technology, the desired frequency, and available area,

the designer can develop these multiples in one cycle (with three doubling circuits)

or in three cycles (with a single doubling circuit). Unfortunately, A, 2A, 4A, and 8A

are insufficient to generate all of the primary multiples through the addition of only

two multiples. A complete secondary set, however, can be formed by the inclusion of

the −A or 5A multiple.

To reduce the overall delay of this algorithm, the delay of the additions in the iter-

85

ative portion must be decreased. As mentioned in Section 3.3.2, the partial products

can be created from a secondary set of multiples and quickly accumulated through the

use of decimal CSAs. In a similar manner, decimal carry-save addition can be used

for partial product reduction. That is, by reordering the addends in Equations 4.1

and 4.2, the secondary multiples can be added, followed by addition of the partial

product sum and carry with the previous iteration’s intermediate product sum and

carry to produce the new intermediate product sum and carry. To account for the

increased order of each partial product to be added, the previous iteration’s interme-

diate product is right-shifted one digit position. Since the addition of the secondary

multiples does not depend on the previous partial product or the intermediate prod-

uct, the aforementioned reordering allows the decimal carry-save additions to be split

into two stages and operate at a much higher frequency.

Using this approach, Equations 4.1 and 4.2 can be rewritten as:

(TSi, TCi) = A · b′i + A · b′′i (4.3)

(PSi+1, PCi+1) = (PSi + PCi + TSi + TCi) · 10−1 (4.4)

where TSi and TCi comprise the partial product in sum and carry format (i.e.,

A × bi) and PSi+1 and PCi+1 comprise the intermediate product for iteration i.

The multiplier operand digit, bi, is represented by b′i and b′′i , where bi = b′i +b′′i , as two

secondary multiples are used to produce the desired partial product. For example,

if bi = 9, b′i = 5 and b′′i = 4 (further details follow). Note the tuple sum, TSi, and

the intermediate product sum, PSi, are four-bit BCD digits, while the tuple carry,

TCi, and intermediate product carry, PCi, are single bits. Only the first pass through

the decimal CSA in Equation 4.3 contributes to the overall latency since the partial

product is never fed back through this counter. When implementing Equation 4.3, a

86

simplified decimal CSA can be used, since only two decimal digits are added together

(i.e., there are no carry bits associated with the secondary multiples). Although this

optimization does not reduce the critical path delay, it does reduce the area slightly.

Each digit summation in Equation 4.4 can have a maximum value of 20, as each

sum digit can have a maximum value of nine and there are two carry bits. A decimal

4:2 compressor, analogous to a binary 4:2 compressor, was designed to handle this

addition. A decimal 4:2 compressor accepts as inputs two, four-bit BCD digits, xi

and yi, and two, one-bit carry-ins, ci[0] and c′i[0], and produces a four-bit BCD sum

digit, si, and a one-bit carry-out ci+1[0]. The decimal 4:2 compressor uses a standard

decimal CSA to compute

(c′′i+1[0], s′i) = xi + yi + ci[0] (4.5)

where c′′i+1[0] is an an intermediate carry-out and s′i is an intermediate sum. A sim-

plified decimal 3:2 counter is then used to compute the final sum and carry as:

(ci+1[0], si) = s′i + c′i[0] + c′′i [0] (4.6)

The multiples 1A, 2A, 4A, and 5A are chosen as the secondary multiple set, as

they can be generated quickly since with both doubling and quintupling of BCD

numbers there is no carry propagation beyond the next more significant digit [105].

See Section 3.3.2 for a description of doubling and quintupling and [39] for the Boolean

equations for generating 2A and 5A.

In summary, in three gate delays, 2A can be generated from A, in three more

gate delays 4A can be generated from 2A, and in parallel 5A can be generated from

A. Thus, after six gate delays, which can easily fit into one cycle, all the secondary

87

Table 4.1: Generation of Primary Multiples from A, 2A, 4A, and 5A

Multiplier Digit Secondary Multiples

(decimal value of bi) b′i + b′′i

0 0 + 0

1 1 + 0

2 0 + 2

3 1 + 2

4 4 + 0

5 5 + 0

6 4 + 2

7 5 + 2

8 4 + 4

9 5 + 4

multiples are ready. Further, since each of the secondary multiples is generated from

A using dedicated logic, and the value of A does not change throughout the iterations,

it is not necessary to store any of the multiples of A in registers. Table 4.1 shows how

all the primary multiples can be generated from the secondary multiples: A, 2A, 4A,

and 5A.

Referring to Equation 4.3 and Table 4.1, a 4:1 multiplexor function is needed to

select A · b′i and a 3:1 multiplexor function is needed to select A · b′′i based on the value

of the current multiplier digit. The controls for these multiplexors, shown below for a

one-hot encoding, are generated and latched one cycle before their use. This does not

affect the latency of the multiplication, since the controls are generated in parallel

with the multiples of A.

Left Tuple or A · b′i from Equation 4.3

88

“select 0” = bi[0] ∧ bi[1] ∧ bi[3]

“select A” = bi[0] ∧ bi[1] ∧ bi[3]

“select 4A” = (bi[0] ∨ bi[1]) ∧ bi[3]

“select 5A” = (bi[0] ∨ bi[1]) ∧ bi[3]

Right Tuple or A · b′′i from Equation 4.3

“select 0” = bi[0] ∧ bi[2]

“select 2A” = bi[2]

“select 4A” = bi[0]

Here, ∧ represents logical AND while ∨ represents logical OR (see Table B.5). These

equations are simplified based on the fact the BCD sum digits only have values in

the range {0, . . . , 9}. Note that if static logic is used for the multiplexors, and no

select signals are active, then the multiplexor will source a logic 0 value. In this case,

the selection of 0 occurs by default and only 3:1 and 2:1 multiplexors are needed to

select the two multiplicand multiples needed to realize Equation 4.3.

Another way decimal carry-save addition benefits decimal multiplication is in

removing the redundancy in the intermediate product after all the partial products

have been accumulated. Because the intermediate product is represented by a four-bit

BCD sum and a one-bit carry, the final adder used to yield a non-redundant product is

less complex and faster than one which must accommodate two, four-bit sums in each

digit position. The digit generate signal only occurs when the sum equals nine and

the carry equals one (a three input AND), and the digit propagate only occurs when

the sum equals eight and the carry equals one or when the sum equals nine Thus, the

equations for the digit generate and digit propagate in the jth digit position are as

89

follows:

gj = psj[0] ∧ psj[3] ∧ pcj

pj = (psj[0] ∧ pcj) ∨ (psj[0] ∧ ps[3])

= psj[0] ∧ (psj[3] ∨ pcj)

Note these equations are simplified based on the fact the BCD sum digits only have

values in the range {0, . . . , 9}.

Implementation and Analysis

The iterative DFXP multiplier design, which includes the features just described,

is shown in Figure 4.3. The multiplier takes one cycle to generate the secondary

multiples (A, 2A, 4A, and 5A), one cycle to produce the first partial product to be

added, one cycle per each multiplier digit to accumulate all the partial products, and

two cycles to produce the final product. Thus, it has a worst-case latency of n + 4

cycles and can initiate successive multiplications of n + 1 cycles (i.e., its initiation

interval is every n + 1 cycles). This design scales well to larger operand sizes, since

increasing the operand size only affects2 the number of iterations and the delay of the

final carry-propagate adder, which can be further pipelined.

A register transfer level model of the presented multiplier supporting 64-bit (16-

digit) operands was coded in Verilog. The multiplier design was synthesized using LSI

Logic’s gflxp 0.11um CMOS standard cell library and the Synopsys Design Compiler.

Table 4.2 contains area and delay estimates for the multiplier design presented. The

values in the FO4 Delay column are based on the delay of an inverter driving four

same-size inverters being 55ps in the aforementioned technology.

2There are also electrical affects such as increased fan-out and loading.

90

Multiplicand Register (
L1L2
)
Multiplicand Register (Master/Slave)

Decimal (3:2) Counter (or modified to assume
c
i
[0] = 0)

Simplified Decimal Carry Propagate Adder (1

st

 portion)

Intermediate Final Product Register (Master/Slave)

Final Product Register (Master/Slave)

Multiplicand Register (
L1L2
)
Multiplexor Control Register (Master/Slave)

3:1 Multiplexor (select 0,
2A
,
4A
)

5A

4A

A

"0,A,
4A
,
5A
"

PS
i

intermediate

carries

P

P[0:
n
-1]
 P[
n
:
2n
-1]

from control logic (based on multiplier digit: b
i
)

Simplified Decimal Carry Propagate Adder (2

nd

 portion)

Secondary Multiple Generation Block (
2A
,
4A
,
5A
)

4:1 Multiplexor (select 0,
A
,
4A
,
5A
)

Partial Product Shift Register (Master/Slave with Reset)
 B / Final Product Shift Register (Master/Slave)

Multiplicand Register (
L1L2
)
Secondary Multiple Register (Master/Slave)

Decimal (4:2) Compressor

0
"0,
2A
,
4A
"

0

0

A

2A

4A

A

4>>
PC
i
+1
 PS
i
+1

PC
i

TS
<<4
TC

PC
i
 PS
i
TS
TC

1

2

iterative

portion

p
i
 assuming

no carry

not on

critical

path

B

Figure 4.3: Iterative DFXP Multiplier Design Using Decimal CSAs

Note there are a number of data-dependent optimizations that can be applied to

the described multiplier. These include: skipping zeros in the multiplier operand,

91

Table 4.2: Area and Delay of Iterative DFXP Multiplier (Decimal CSAs)

Iterative

p = 16 (Decimal CSAs) [39]

Latency (cycles) 20

Throughput (ops/cycle) 1/17

Cell count 59,234

Area (um2) 119,653

Delay (ps) 810

Delay (FO4) 14.7

effectively performing two digit multiplications at the same time for a subset of two-

digit strings in the multiplier operand, and exiting early after the handling of the

leading nonzero multiplier operand digit. The early exit strategy is the only opti-

mization of the three that does not add delay to the dataflow portion of the design.

Although skipping zeros and double-digit multiplication will add delay, the delay is

not introduced in the critical iterative portion of the design. Details of these opti-

mization strategies can be found in [39].

Summary

An iterative DFXP multiplier utilizing decimal CSAs for the multiplicand multiple

generation and partial product accumulation was presented. This design can support

a high operating frequency, scales well, has a worst-case latency of n + 4 cycles, and

an initiation interval of n + 1 cycles, where n is the number of significant digits in

the multiplier operand. Additionally, several data-dependent optimizations can be

implemented.

Follow-on research was performed to reduce the cycle time delay of this multiplier

92

algorithm by replacing the direct decimal addition scheme used in the 4:2 compressor

with a binary addition and correction scheme using the overloaded decimal representa-

tion (see Section 3.2.2). This modified iterative DFXP multiplier, published in [113],

exhibited a 12% reduction in cycle time (14% improvement in clock frequency) at the

expense of four additional cycles of latency and a 78% increase in area. The addi-

tional cycles are required to remove all the redundancy in the product. In the next

subsection, another iterative DFXP multiplier is presented which utilizes a recoding

of the operands and signed-digit adders.

4.1.2 Multiplier Employing Signed-Digit Adders

In the DFXP design of the last subsection, a secondary set of multiplicand mul-

tiples was used to produce the partial products (1A to 9A). In contrast, the design

presented in this subsection uses the novel approach of restricting the range of the

operand digits such that only the 1A to 5A multiples are needed. Restricting the

range of the operand digits leads to a faster generation of a smaller number of unique

partial products. A second significant and novel difference is that the partial products

are not created from stored multiplicand multiples, rather, they are created on-the-fly

through digit-by-digit multiplier logic blocks. Referring to Figure 3.6 on page 63, this

multiplier design recodes the multiplicand and the multiplier operand (Figure 3.6.a),

generates the partial products in an iterative manner on-the-fly (Figure 3.6.b), accu-

mulates the partial products iteratively (Figure 3.6.c), and then removes the redun-

dancy in the final intermediate product while converting the signed-digits to BCD

(Figure 3.6.d and 3.6.e) to yield the final product.

93

Algorithm

A flowchart-style drawing of the algorithm described in [40] appears in Figure 4.4.

After reading in the operands, both the multiplier and multiplicand operands are

recoded into the range of {−5, . . . , + 5}. The recoding of the operands occurs

in the block labeled “Recode Multiplicand and Multiplier” in Figure 4.2. Once the

operands are recoded, the portion of the algorithm which iterates over the multiplier

operand digits begins, as shown in the block labeled “Iterative Portion” in Figure 4.2.

This portion includes creating the partial product in a redundant form, converting

the partial product to signed-digits, adding the partial product to the intermediate

product in a redundant form, shifting the intermediate product one digit to the right,

and producing a final product digit. After all the partial products have been accu-

mulated, an addition is performed to produce a final product comprised of positive

digits (shown in the “Add to Yield Final Product” block). A final step is needed

to convert each digit of the final product to BCD. This occurs in the block labeled

“Convert to BCD” in Figure 4.2.

Features

Using signed-digits, the range of all digit positions in a number can be restricted by

replacing each digit whose value exceeds the desired range with the additive inverse of

its radix complement and incrementing its next more significant digit [119]. Figure 4.5

provides an example of this recoding technique resulting in digits within the range of

{−5, . . . , + 5}. Each digit greater than or equal to five is recoded by subtracting

ten and incrementing the next more significant digit. This is explained later in more

detail. (The reader is referred to [136] for further reading on signed-digit numbers.)

The range {−5, . . . , + 5} was chosen as it is close to the minimum of ten

94

Write Result

Read Operands

Add to Yield Final Product

Recode
 Multiplicand and Multiplier

(-5, ... , +5)

 Iterative Portion

1) Select Multiplicand Multiples,

2) Create Partial Product,

3) Convert Partial Product to Signed-Digits,

4) Add to Intermediate Product,

5) Shift Intermediate Product One Digit to the Right,

6) Produce Final Product Digit

Convert to BCD

Figure 4.4: Flowchart of Iterative DFXP Multiplier Using Signed-Digit Adders

9837 = (1 · 104) + (0 · 103) + (−2 · 102) + (4 · 101) + (−3 · 100) = 10243

Figure 4.5: Example of Recoding into Signed Decimal Digits

representable values needed for decimal digits which means fewer unique digit-by-digit

products [122]. That is, since the magnitude of a digit-by-digit product is independent

of the sign of the multiplicand and multiplier inputs, and this recoding range is

balanced, this choice significantly reduces the combinations of inputs needing to be

multiplied. Table 4.3 shows the reduction in both input combinations and complexity

achievable by restricting the range of inputs for which digit-by-digit products must

95

Table 4.3: Complexity of Digit-by-Digit Products for Ranges of Decimal Inputs

maximum maximum

range of total unique total minterms gate levels

inputs products products minterms† per output† per output‡
[0− 9] x [0− 9] 100 37 62 23 19

[1− 9] x [1− 9] 81 36 61 21 17

[2− 9] x [2− 9] 64 30 55 20 16

[0− 5] x [0− 5] 36 15 20 7 8

[1− 5] x [1− 5] 25 14 20 7 7

[2− 5] x [2− 5] 16 10 15 5 6

† Espresso results in sum-of-products form

‡ SIS results with library of INV, NAND2, NAND3, NAND4, NOR2, NOR3,

AOI21, AOI22, XOR, and XNOR cells

be generated. As shown, with a digit range of {0, . . . , 9}, there are a total of 100

input combinations which can result in 37 unique products. Computing this product

set via a combinatorial digit-by-digit multiplier block requires 62 minterms, with the

worst-case output bit using 23 minterms or 19 gate levels, as determined by SIS [137].

The proposed range, {−5, . . . , +5}, leads to digit-by-digit products of [0−5]×[0−5],

which requires 7 minterms or 8 gate levels for its worst-case output bit. By taking

advantage of the facts that if either of the operand digits is zero, the digit-by-digit

product is zero or if either of the operand digits is one, the digit-by-digit product is

the other operand’s digit, only 16 combinations are possible which requires only 5

minterms or 6 gate levels for the worst-case output bit. This is shown in the last line

of Table 4.3.

To achieve the restricted range of {−5, . . . , + 5}, one might assume that each

digit greater than or equal to six must be recoded by subtracting ten and incrementing

96

line cycle function (line # or “value”) example §
1 0 latch multiplicand 3 3 9
2 latch multiplier 2 6 5

3 1 recode multiplicand (1) 3 4 1
4 recode multiplier digit [2] (2) 5
5 generate partial product 5 0 5
6 in overlapped form (3,4) 1 2 0

7 2 convert partial product to 2 3 0 5
8 non-overlapped form (5,6)
9 recode multiplier digit [1] (2) 3
10 generate partial product 1 2 3
11 in overlapped form (3,9) 1 1 0

12 3 add partial product (7) to 2 3 0 5
13 intermediate product (“0”);
14 convert partial product to 1 0 2 3
15 non-overlapped form (10,11)
16 recode multiplier digit [0] (2) 3
17 generate partial product 1 2 3
18 in overlapped form (3,16) 1 1 0

19 4 convert LSD of intermediate 5
20 product (12); transfer out 0
21 add partial product (14) to 1 2 1 3
22 intermediate product (12,20)
23 convert partial product to 1 0 2 3
24 non-overlapped form (17,18)

25 5 convert LSD of intermediate 3
26 product (21); transfer out 0
27 add partial product (23) to 1 1 0 2
28 intermediate product (21,26)

29 6 first half of conversion
30 to BCD (27)
31 convert LSD of intermediate 8
32 product (27); transfer out 1

33 7 second half of conversion 0 8 9
34 to BCD (27,32)

§ Digits in the final product are double underlined.

Figure 4.6: Example for Iterative DFXP Multiplier Using Signed-Digit Adders

97

the next more significant digit. However, since a digit can be incremented due to the

value of the next less significant digit, the chosen strategy is to evaluate and recode all

digits greater than or equal to five. By doing so, the recoding of the digits can occur

in parallel as an increment of the next more significant digit will never propagate.

Although it is not always necessary to recode a digit that has a value of five, the

chosen approach decreases hardware as only one condition, greater than or equal to

five, must be evaluated for each digit position. Figure 4.6, referred to throughout

this subsection, provides two examples of three-digit numbers recoded in the range

of {−5, . . . , + 5}. The number on line 1 (339) is recoded into the number on line 3

(341), and the number on line 2 (265) is recoded into 335, the digits of which can be

found on lines 16, 9, and 4, respectively.

To restrict the range of the operand digits to be {−5, . . . , +5}, the multiplicand

is sent to a set of n recoders, where n is the number of digits of the operands, and

each multiplier digit is sent to a single recoder, as it is being used. Each recoder

block receives as input one four-bit BCD operand digit, ai, and a single bit, ge5i−1,

indicating if the next less significant digit is greater than or equal to five and produces

as output a four-bit signed-magnitude digit, aS
i , and a single bit, ge5i, indicating

whether the current digit is greater than or equal to five. The superscript S indicates

the result of the recoding is a signed-magnitude digit.

Figure 4.7 shows a block diagram of a recoder, and Equation 4.7 describes its

function as a collection of sub-functions selected by specific classifications of the

input data. Although the equations in this section are shown based on digits of the

multiplicand operand A, the same equations are applicable to the digits of multiplier

operand B. The last three sub-functions are increment, complement, and increment

& complement, respectively, hence the superscripts. The circuit implementations

for each of these sub-functions are simplified based on the limited range of their

98

recoder
 i
 ge5
i
-1

ge5
i

a
i
[0:3]

a
i

S

[0:3]

n
-1
 n
-2
 0
1
i
 ...
...

...
...

"0"

A

...
...

A

S

(a)

(b)

"000"

Figure 4.7: Recoder Block: (a) Single Digit, (b) n-Digit Operand

inputs. That is, increment only occurs on values zero through four (ai < 5), and

both complement and increment & complement only occur on values five through

nine (ai ≥ 5).

aS
i =





ai if ai < 5 & ai−1 < 5

aI
i = ai + 1 if ai < 5 & ai−1 ≥ 5

aC
i = −(10− ai) if ai ≥ 5 & ai−1 < 5

aIC
i = −(9− ai) if ai ≥ 5 & ai−1 ≥ 5

(4.7)

The following sets of equations describe the logic of these three sub-functions.

In each four-bit signed-magnitude digit, bit [0] represents the sign, and bits [0:2]

represent the magnitude. Only Equations 4.8 through 4.14 are unique and require

circuitry. The different forms of the operand digit, along with the unaltered operand

99

digit are input to multiplexor logic that selects the correct digit based on ge5i and

ge5i−1 (Equation 4.14).

aI
i [0] = 0

aI
i [1] = ai[1] ∧ (ai[2] ∨ ai[3]) (4.8)

aI
i [2] = ai[2]⊕ ai[3] (4.9)

aI
i [3] = ai[3] (4.10)

aC
i [0] = 1

aC
i [1] = ai[1] ∨ (ai[2] ∧ ai[3]) (4.11)

aC
i [2] = ai[2]⊕ ai[3] (4.12)

aC
i [3] = ai[3]

aIC
i [0] = 1

aIC
i [1] = ai[0] ∨ ai[2] (4.13)

aIC
i [2] = ai[2]

aIC
i [3] = ai[3]

ge5i = ai[0] ∧ ai[1] ∧ (ai[2] ∨ ai[3]) (4.14)

In the case of recoding the multiplicand operand A, the nth digit needs to be

set to 1 if the MSD is greater than or equal to five (i.e., when ge5n−1 is high).

This means there will be one additional partial product, which can be realized by

concatenating ge5n−1 with three leading zeros. The recoded multiplicand operand AS

and a digit from the recoded multiplier operand, bS
i , are input to digit multiplier blocks

as described in the next subsection to generate a partial product PO
i in overlapped

100

form.

Word-by-Digit Partial Product Generation To reduce the area and delay of

generating partial products, the range of the input digits for which digit-by-digit

products must be generated is restricted in three ways. The first restriction sets an

upper bound on the input digits by recoding the operands into signed-magnitude

digits with a range of {−5, . . . , + 5}. The second restriction sets a limit on the

possible input digit combinations by applying the principle that the absolute value

of a product is independent of the sign of the input digits. The third restriction sets

a lower bound on the input digits by applying the observation that if either digit is

zero, the product is zero, and if either digit is one, the product is the other digit.

With these three restrictions on the input digits, the range is reduced to only 2

through 5 when computing a product. Thus, only 16 combinations of the inputs are

possible resulting in ten different products with a range of {4, . . . , 25}. With existing

schemes, the range of digits is {0, . . . , 9}, which yields 100 possible combinations

of the two inputs3. (Table 4.3 illustrates for various input ranges the significant

reduction in complexity achievable by restricting the number of input combinations.)

To generate a partial product on a word-by-digit basis, the recoded multiplicand

and a recoded digit from the multiplier are input to n + 1 digit multiplier blocks

(see Figure 4.8b). Note since the nth digit of the recoded multiplicand has at most

a magnitude of 1, the digit multiplier block in this position can be replaced with a

simpler circuit to produce either 0 or the recoded multiplier digit, |bS
i |. Each multiplier

block receives as input two, four-bit, signed-magnitude digits, aS
i and bS

i , and produces

as output two, signed-magnitude partial product digits, pO
i+1 and pO

i . The superscript

O indicates the partial product is in an overlapped form since each digit multiplier

3If zero and one are removed from the range in a similar manner, there are 64 combinations

101

n
 n
-1
 0
1
i
 ...
...

...
...
 A

S

...
...

P
i

O

(a)

(b)

a
0

S

[0:3]
 b
i

S

[0:3]

xor
 of

signs

p
i

O

[0:3]
p
i+
1

O

[0:2]

...
...
 b
i

S

b
i

S

[1:3]
a
0

S

[1:3]
 "000"

mux

p
i

T

[1:3]

mux

"00"

xor

p
i

T

[0]

p
i+
1

T

[1:2]

p
i+
1

O

[0]
 p
i+
1

O

[1:2]
 p
i

O

[0]
 p
i

O

[1:3]

{2,...,5}

 x

{2,...,5}

Figure 4.8: Digit Multiplier Block: (a) Single Digit, (b) n-Digit

block yields two digits. Equation 4.15 describes the function to generate a digit-

by-digit product, in absolute-value form, as a collection of sub-functions selected by

specific classifications of the input digits. The superscript T indicates the sub-function

output is realized via a lookup table or a combinational circuit structure.

To simplify the removal of the overlap in the partial product, the range of |pT
i | is

restricted to {0, . . . , 5} by again using signed-magnitude digits. With this restriction,

which matches the inherent restriction on the other sub-functions in Equation 4.15,

102

four bits are needed for the product’s LSD (range of {−4, . . . , + 5}), and two bits

are needed for the product’s MSD (range of {0, 1, 2}).

|pO
i+1, p

O
i | =





00, 0000 if |aS
i | = 0 or |bS

i | = 0

00, 0bS
i [1 : 3] if |aS

i | = 1 & |bS
i | > 0

00, 0aS
i [1 : 3] if |aS

i | > 1 & |bS
i | = 1

|pT
i+1, p

T
i | if |aS

i | > 1 & |bS
i | > 1

(4.15)

Table 4.4 shows for inputs ranging from 2 to 5 the two-digit, signed-magnitude prod-

ucts conforming to this magnitude restriction. Although the LSD has a negative sign

in some instances, the MSD is always positive, and thus the two-digit product is a

positive value. Figure 4.8a shows the block diagram of a digit multiplier block, and

Equations 4.16 - 4.21 show how the two-digit products are developed.

Table 4.4: Restricted-Range, Signed-Magnitude Products

x 2 3 4 5

0410 1410 1210 1010
2

00, 01002 01, 11002 01, 10102 01, 00002

1410 1110 1210 1510
3

01, 11002 01, 10012 01, 00102 01, 01012

1210 1210 2410 2010
4

01, 10102 01, 00102 10, 11002 10, 00002

1010 1510 2010 2510
5

01, 00002 01, 01012 10, 00002 10, 01012

Since the signs of the recoded operand digits were not considered when generating

the digit-by-digit products, the partial product at this point is in absolute-value form.

Thus, the sign of the recoded operand digits must be used to convert |PO
i | into a

103

|pT
i [3]| = aS

i [3] ∨ bS
i [3] (4.16)

|pT
i [2]| = aS

i [2] ∧ bS
i [2] ∧ bS

i [3]∧ (4.17)

aS
i [2] ∧ aS

i [3] ∧ bS
i [2]

|pT
i [1]| = aS

i [3] ∧ bS
i [1] ∧ bS

i [3]∧ (4.18)

(aS
i [2]⊕ aS

i [3]) ∧ bS
i [2] ∧ bS

i [3]∧
aS

i [2] ∧ bS
i [2] ∧ bS

i [3]∧
aS

i [2] ∧ aS
i [3] ∧ bS

i [2] ∧ bS
i [3]

|pT
i [0]| = aS

i [3] ∧ bS
i [2] ∧ bS

i [3]∧ (4.19)

aS
i [2] ∧ bS

i [2] ∧ bS
i [3]∧

aS
i [2]⊕ aS

i [3] ∧ bS
i [2] ∧ bS

i [3]

|pT
i+1[1]| = aS

i [2] ∧ bS
i [1]∧ (4.20)

(aS
i [1] ∨ aS

i [3]) ∧ bS
i [2]∧

aS
i [2] ∧ bS

i [3]

|pT
i+1[0]| = aS

i [1] ∨ bS
i [1] (4.21)

properly signed partial product. This step is necessary before attempting to add the

overlapping portions of the word-by-digit products as not doing so could yield an

incorrect partial product. To develop a partial product with the correct sign, PO
i , the

exclusive-or (XOR) of the input signs (i.e., aS
i [0]⊕ bS

i [0]), is used in two places. First,

it directly becomes the sign of the product’s MSD, pO
i+1[0]. Second, it is XORed with

the sign of the product’s LSD, |pO
i [0]|, to produce pO

i [0]. Figure 4.6, lines 5/6, 10/11,

and 17/18, provide examples of the digit multiplier blocks yielding the sign-corrected

partial products in overlapped form.

Ultimately, all the partial products need to be properly aligned with respect to

one another and added together. The approach chosen in this work is to accumu-

late iteratively the partial products via the signed-digit adder described by Svoboda

104

in [4]. Svoboda’s adder accepts two uniquely encoded signed-digits (see Table 3.3 in

Section 3.1) in the range of {−6, . . . , +6} and yields a sum in the same range. Note,

with the encoding shown in Table 3.3, the additive inverse is obtained by taking the

one’s complement.

Recall the partial product at this point is properly signed but still in an overlapped

form. Each digit position4 has one four-bit, signed-magnitude digit whose range is

{−5, . . . , +5} and one three-bit, signed-magnitude digit whose range is {−2, . . . , +

2}. The sums for these ranges of overlapping signed-digits, suitable for entry into a

Svoboda adder, are in bold type in Table 4.5. In each entry of this table, the digit on

the right is a sum digit in position i, and the digit on the left is a transfer digit, which

is added to the sum digit in position i+1. The term transfer digit is used to indicate

when a carry or a borrow occurs. To achieve the desired encoding, a combinatorial

circuit is needed to recode the signed-magnitude digits in the partial product PO
i into

signed-digits (Pi). A straightforward implementation of this recoding step requires

ten logic levels, as determined by SIS. The recoded partial product, Pi, is then added

to the intermediate product, IPi−1, as described in the next section. Figure 4.6, lines

7, 14, and 23, provide examples of generating a non-overlapped partial product from

the sign-corrected partial products in overlapped form.

Accumulation of Partial Products and Generation of Final Product As the

recoded multiplier operand is traversed from LSD to MSD, the partial product, Pi,

needs to be added to the sum of the previous partial products. The accumulated sum

of partial products is termed the intermediate product and is designated IPi, where

the subscript indicates how many partial products have been accumulated. The ac-

cumulation occurs in an iterative manner with the intermediate product being shifted

4The MSD and LSD only have one digit in their position.

105

Table 4.5: Restricted-Range, Signed-Digit Sums [4] (All Digits Are Decimal)

+ 6 5 4 3 2 1 0 0 1 2 3 4 5 6

6 00 01 02 03 04 05 14 14 13 12 11 10 11 12

5 01 00 01 02 03 04 05 05 14 13 12 11 10 11

4 02 01 00 01 02 03 04 04 05 14 13 12 11 10

3 03 02 01 00 01 02 03 03 04 05 14 13 12 11

2 04 03 02 01 00 01 02 02 03 04 05 14 13 12

1 15 04 03 02 01 00 01 01 02 03 04 05 14 13

0 14 05 04 03 02 01 00 00 01 02 03 04 05 14

0 14 15 04 03 02 01 00 00 01 02 03 04 05 14

1 13 14 15 04 03 02 01 01 00 01 02 03 04 05

2 12 13 14 15 04 03 02 02 01 00 01 02 03 04

3 11 12 13 14 15 04 03 03 02 01 00 01 02 03

4 10 11 12 13 14 15 04 04 03 02 01 00 01 02

5 11 10 11 12 13 14 15 15 04 03 02 01 00 01

6 12 11 10 11 12 13 14 14 15 04 03 02 01 00

to the right one digit position each iteration to achieve a multiplication of the current

partial product by ten, thus accounting for the increase in weight of each successive

multiplier digit. Each iteration, n + 1 digits from the partial product, Pi, and n + 1

digits from the intermediate product, IPi−1, pass through n+1 Svoboda digit adders.

The range of inputs and their signed-digit sums are shown in Table 4.5. Figure 4.6,

lines 12, 21, and 27, provide examples of accumulating the partial products.

In shifting the intermediate product one digit position to the right, the LSD is

made available for completion as no subsequent partial product digits will be added

to this digit. Since this emergent digit is still in the signed-digit code described in

Table 3.3, it must be converted to BCD. During the conversion process, the transfer

digit from the previous iteration’s intermediate product LSD, ti−1, must be taken into

106

account. Logically, the conversion is as follows. If the LSD is greater than zero, the

LSD is simply converted to BCD and then decremented if the input transfer digit is

−1. If the LSD is less than or equal to zero, the radix complement of the additive

inverse of the LSD is converted to BCD and then decremented if the input transfer

digit is −1 (only the four least significant bits are kept). Lastly, an output transfer

digit, ti, is assigned a value of −1 if the LSD is negative or if the LSD is 0 and the

input transfer digit is −1, otherwise it is assigned a value of 0. Note, since the trans-

fer digit in this situation only indicates a borrow or no borrow, a single bit can be

used. Equations 4.22 and 4.23 show the different cases for converting the intermediate

product LSD and generating the transfer bit, respectively. A straightforward imple-

mentation of this conversion and generation of a transfer bit requires twelve logic

levels, as determined by SIS. The final product is identified by FP . The notation

→ BCD is used to indicate a mapping from the signed-digit form to BCD form.

fpi =





(IPi[LSD] → BCD) + ti−1 if IPi[LSD] ≥ 1

10− (IPi[LSD] → BCD) + ti−1 if IPi[LSD] ≤ 0

(4.22)

ti =





0 if IPi[LSD] ≥ 1

−1 if IPi[LSD] ≤ 0 & ti−1 = −1

(4.23)

After all the multiplier digits have been processed, the signed-digit outputs of the

Svoboda adders comprising IPn−1 need to be converted to BCD to produce the final

product digits, fp0 to fpn−1. Additionally, the transfer bit, tn−2, must be added to

the LSD, i.e., IPn−1[n − 1]. The algorithm to convert the signed-digits, which is on

the order of carry-propagate addition, is fully described in [4]. Figure 4.6, lines 29/33,

provide an example of converting an intermediate product (110) and a transfer bit

107

(1) into BCD digits.

Implementation

Figure 4.9 shows one possible multiplier implementation using the presented ideas.

As shown, this implementation requires n+4 cycles, which is the same latency as the

design of Section 4.1.1 published in [39]. In the first cycle, operand A and a single

digit of operand B are recoded. Then, the outputs of the recoder blocks are input

to the digit multipliers to yield a sign-corrected partial product in overlapped form.

In the second cycle, the overlap of the two-digit products is removed and the partial

product is recoded in a manner appropriate for a Svoboda signed-digit adder. For

the next n cycles, a partial product is added to the previous iteration’s intermediate

product, and a new partial product is generated. In the last two cycles, the final

intermediate product is converted into BCD digits.

Figure 4.6 shows an example of multiplying 339 by 265 using the proposed mul-

tiplier implementation. In cycle 1, the multiplicand and the LSD of the multiplier

are recoded into the signed-digit numbers 341 (line 3) and 5 (line 4), respectively.

Also in cycle 1, the recoded multiplicand (line 3) is multiplied by the LSD of the

recoded multiplier (line 4) to yield the partial product in overlapped form (lines 5/6).

In cycle 2, the partial product generated in overlapped form in cycle 1 is converted

to non-overlapped form (line 7). Additionally, the next more significant digit in the

multiplier is recoded (line 9) and a partial product based on this digit is generated in

overlapped form (lines 10/11). In cycle 3, the accumulation of the partial product is

initiated by adding the partial product in line 7 to the intermediate product, previ-

ously initialized to zero (line 12). Also in cycle 3, the partial product in overlapped

form from the previous cycle is converted to non-overlapped form (line 14), the MSD

of the multiplier digit is recoded (line 16), and a partial product based on this digit

108

 register

digit multipliers

register

overlap removal, encoding

register

signed-digit to BCD converter (1

st

 cycle)

register

signed-digit to BCD converter (2

nd

 cycle)

final product

LSD

correction

transfer

digit

operand A

operand B

need to

store
ge5
i

c
y

c
l

e

1

t
o

n

c
y

c
l

e

2

t
o

n

+

1

c
y

c
l

e

3

t
o

n

+

2

c
y

c
l

e

n
+

3

c
y

c
l

e

n
+

4

A

S

b
i

S

P
i

O

P
i

IP
i
-1

IP
i

A

b
i

shift register

signed-digit adder
 c

register
 t

recoders
 r

Figure 4.9: Iterative DFXP Multiplier Using Signed-Digits Adders

109

is generated in overlapped form (lines 17/18). In cycle 4, the first digit of the fi-

nal product (i.e., the LSD) is produced by converting the LSD of the intermediate

product to BCD (line 19). The conversion takes into account the previously cleared

transfer bit and produces an output transfer bit for the next intermediate product’s

LSD conversion to BCD (line 20). Also in cycle 4, another partial product is added

to the intermediate product (line 21) and the previous cycle’s partial product is con-

verted to non-overlapped form (line 23). Cycle 5’s function includes the conversion to

BCD of the intermediate product LSD developed in cycle 4 (line 25), the generation

of an output transfer bit (line 26), and the addition of the partial product developed

in cycle 4 to the intermediate product (line 27). In cycle 6, the two-cycle process of

converting the final intermediate product to BCD digits is initiated (line 29). Also

in cycle 6, another intermediate product LSD is converted to BCD (line 31) and an

output transfer bit is developed (line 32). In the final cycle, 7, the conversion of the

final intermediate product to BCD digits is completed (line 33).

Summary

This DFXP multiplier utilizes the novel approach of restricted-range, signed-

digits throughout the multiplication process to generate and accumulate the partial

products in an efficient manner. To achieve the restricted range, a simple recod-

ing scheme is used to produce signed-magnitude representations of the operands.

The partial product generation takes the recoded digits, which are in the range of

{−5, . . . , + 5}, and uses combinational logic to obtain products for input digits

in the range {2, . . . , 5}. The results from the partial product generation logic are

then recoded and added to the accumulated sum of previous partial products via a

signed-digit adder. Finally, the signed-digit result is converted to BCD result. Orig-

inal aspects of this work include: 1) the method used for recoding the digits into a

110

signed-magnitude representation; 2) the design of the decimal partial product gen-

eration; and, 3) the recoding of the partial products before sending them into the

signed-digit adder. This design scales well to support larger width operands.

4.1.3 Summary of Iterative DFXP Designs

The two iterative DFXP multiplier designs of Subsections 4.1.1 and 4.1.2 achieve

similar latencies, yet there are a couple notable differences. The multiplier design

employing decimal CSAs develops and stores a reduced set of multiplicand multiples

to reduce the delay in producing the partial product needed in each iteration. How-

ever, in the multiplier design employing signed-digit adders, there are no multiplicand

multiples to distribute, only the multiplicand. The second difference relates to area,

as described next.

Upon considering which design to extend to support DFP, the design employ-

ing decimal CSAs was chosen as it was deemed to have less area. This is because

the combination of the decimal CSAs and decimal compressors contained less logic

than the combination of the digit multiplier blocks and signed-digit adders. Had the

ensuing research been more focused on extending the design to a parallel implemen-

tation, the multiplier using the signed-digit adders may have been chosen as it is far

less demanding of wiring. In the next section, an iterative DFP multiplier design is

presented.

111

4.2 Floating-Point Design

There are several papers presenting hardware designs for DFP multiplication [23,

25,87,89]. The multiplier designs by Cohen et al. [87] and Bolenger et al. [89] iterate

over the multiplicand and multiplier operands on a digit-by-digit basis accumulating

the partial products along the way. Furthermore, the results they produce do not

comply with IEEE 754-2008. In contrast, the multiplier designs used on the IBM

Power6 [23] and System z10 [25] processors do conform with IEEE 754-2008. These

multipliers are essentially the same, as they use the same word-by-digit algorithm.

See Section 3.3.2 for a description of their latencies.

The DFP multiplier described in this section is based on the iterative DFXP

multiplier of [39] which utilizes decimal CSAs for partial product generation and

decimal compressors for partial product accumulation. This research, presented in [41]

and compared against a parallel DFP multiplier in [42], is believed to be the first DFP

multiplier design in compliance with IEEE 754-2008.

4.2.1 Algorithm

The DFP multiplier design presented in this paper extends the iterative DFXP

multiplier design published in [39] and described in Section 4.1.1 to comply with

IEEE 754-2008. As a brief summary of this fixed-point design, the multiplication

is achieved by generating the double, quadruple, and quintuple of the multiplicand,

successively evaluating the digits of the multiplier from LSD to MSD, selecting two

tuples which sum to the necessary partial product, adding the partial product to the

previous iteration’s accumulated product, and generating a double-width product

from the iterative portion’s intermediate product (produced in sum and carry form).

Extending this DFXP functionality to support DFP requires the algorithm depicted

112

in the flowchart-style drawing shown in Figure 4.10. In the figure, the steps of the

DFXP multiplier from [39] are surrounded by a dashed rectangle, with the exception

of the “Generate Sticky Bit” in the “Iterative Portion” block and the “Shift Left”

steps.

The operation begins with the reading of the operands from either a register file

or from memory (block labeled “Read Operands” in Figure 4.10). As the operands

are encoded via the DPD algorithm, each must be decoded (block “DPD Decode

Operands”). Next, the double, quadruple, and quintuple of the multiplicand are gen-

erated in the datapath portion of the design (block “Generate Multiplicand Multi-

ples”). Then, in an iterative manner starting with the LSD of the multiplier operand,

each digit is used to select two multiplicand multiples to add together to yield the

respective partial product, the partial product is added with the previous iteration’s

accumulated product, the accumulated product is shifted one digit to the right, and

the sticky bit is generated (see the block labeled “Iterative Portion”). All the addi-

tions in the iterative portion of the algorithm yield intermediate results in a redundant

form.

In parallel with the generation of the multiplicand multiples and the accumulation

of partial products, the significands are examined to determine their leading zero

counts, LZA and LZB, the exponents are examined to determine the intermediate

exponent, IE, and the signs are XORed to determine the product sign, sP (see

the block whose label begins with “Determine Leading Zero Counts”). Based on

the leading zero counts and the intermediate exponent, two vital control values are

generated: a shift left amount, SLA, and a sticky counter, SC (block label begins

with “Generate Shift Left Amount”). The shift left amount is needed to properly

align the intermediate product, IP , prior to rounding. The sticky counter is needed

to generate the sticky bit, sb, created on-the-fly during the accumulation of partial

113

Read Operands

DPD
 Decode Operands

Shift Left

Add

DPD
 Encode Result

Write Result

Select Override Result or Arithmetic Result

Detect Any

Exceptions

Iterative Portion
:

1) Generate Partial Product,

2) Generate Intermediate

Product,

3) Generate Sticky Bit

Generate
 Shift Left

Amount and Sticky

Counter

Generate Multiplicand

Multiples

Determine Leading

Zero Counts,

Generate

Intermediate

Exponent, and

Generate Result

Sign

Round and Final Shift Left

Generate Override

Result

Figure 4.10: Flowchart of Iterative DFP Multiplier Using Decimal CSAs

114

products.

At the end of the iterative accumulation of partial products, the intermediate

product is in the 2p-digit intermediate product register. The intermediate product

is then shifted left based on the SLA in an effort to yield a product with the ap-

propriate exponent value (see the “Shift Left” block). Since the shifted intermediate

product is in redundant form, an add step is necessary to produce a non-redundant

product (block labeled “Add”). Ultimately, a p-digit rounded product needs to be

delivered. Thus, the shifted intermediate product, SIP , is rounded and a final shift is

performed to yield a rounded intermediate product, RIP , which is the result barring

any exceptions (see block labeled “Round and Final Shift Left”). After rounding the

rounded intermediate product, the product exponent, EP , product significand, CP ,

and product combination field are generated5 to produce the arithmetic result.

Using the operands’ combination fields, the intermediate exponent, and infor-

mation from the shift and round steps, a determination is made as to whether an

exception needs to be signaled and corrective action taken (see blocks labeled “De-

tect any Exceptions” and “Generate Override Result”). Depending on whether an

exception is detected, the override result or arithmetic result is selected (see “Select

Override Result or Arithmetic Result”). Finally, the result is DPD encoded and

written to a register file or memory (see blocks “DPD Encode Result” and “Write

Result”, respectively).

4.2.2 Features

Figure 4.11 depicts the top portion of the DFP multiplier design. It is provided

to aid in visualizing the manner in which partial products enter the intermediate

5In actuality, the leading digit of CP and the leading two bits of EP are contained in the com-
bination field.

115

B/Intermediate Product Register (Master/Slave)

Multiplicand Register (
 L1L2
)
Multiplicand Register (Master/Slave)

Decimal (3:2) Counter

3:1 Multiplexor (select 0,
 2A
,
 4A
)

5C
A

4C
A

C
A

"0,A,
4C
A
,
5C
A
"

PS
i
[0:
n
-1]
 IP
i
[
n
:
2n
-1]

Secondary Multiple Generation Block (
 2A
,
 4A
,
 5A
)

4:1 Multiplexor (select 0,
 A
,
 4A
,
 5A
)

Intermediate Product Register (Master/Slave with Reset)

Multiplicand Register (
 L1L2
)
Secondary Multiple Register (Master/Slave)

Decimal (4:2) Compressor

0
"0,
2C
A
,
4C
A
"

0

0

C
A

2C
A

4C
A

C
A

4>>
PC
i
+1
 PS
i
+1

PC
i
[0:
n
-1]

TS
<<4
TC

PC
i
PS
i
TS
TC

2:1 Multiplexor (select C
 B
, IP)

C
B

Location of decimal point

Selective OR
SC

LSD

position

guard

digit

position

round

digit

position

sticky

bit

Effective

shift right

by one,

mux
 path

not shown

Collectively referred to as
 IP
i
[0:
n
-1]

Legend

C
A
, C
B
 = Coefficient of A, B

TS
,
 TC
 = Partial Product Sum, Carry

PS, PC = Most Significant Half of Intermediate

 Product in Carry-Save Form

IP = Intermediate Product

5 bits/digit
 4 bits/digit

4>>

Figure 4.11: Top Portion of Iterative DFP Multiplier Design

product register for accumulation, the location of the decimal point in the datapath,

and the generation of the sticky bit. With the exception of the sticky bit generation

shown in the magnified inset, this top portion of the multiplier design is the DFXP

multiplier design described in [39].

A critical design choice is the location of the decimal point in the datapath as

this dictates the direction the intermediate product may need to be shifted and the

116

location and implementation of the rounding logic. For this design, the location

is chosen to be exactly in the middle of the intermediate product register. This

keeps the decimal point in the same location throughout the datapath. Further, the

intermediate product need only be shifted in one direction to produce a rounded

product (except when underflow occurs).

In the remainder of this subsection, the primary components necessary to perform

DFP multiplication are described in detail. These include generating the intermediate

exponent, shifting the intermediate product, generating the sticky bit, generating the

result sign, rounding, and detecting and handling any exceptions.

Intermediate Exponent Generation

At the end of partial product accumulation, p digits of the intermediate prod-

uct are to the right of the decimal point. Thus, the intermediate exponent of the

intermediate product, IEIP , is the preferred exponent increased by p:

IEIP = EA + EB − bias + p

= PE + p (4.24)

After left shifting the intermediate product as part of preparing a p-digit final

product, the intermediate exponent is decreased by the shift left amount, SLA (de-

scribed in the next subsection). The exponent associated with this shifted interme-

diate exponent, IESIP , is calculated as follows.

IESIP = EA + EB − bias + p− SLA

= PE + p− SLA

= IEIP − SLA (4.25)

117

The shifted intermediate product, SIP , is then rounded to become the rounded

intermediate product, RIP , and the associated exponent is named the intermediate

exponent of the rounded intermediate product, IERIP . The IERIP is one less than

IESIP or equal to IESIP , depending on whether or not a corrective left shift of one

digit occurs during rounding. However, the product exponent may differ from IERIP

due to an exception.

Related to the intermediate exponent calculations is the determination of the

amounts by which IEIP is less than the minimum exponent, Emin, or more than

the maximum exponent, Emax. These comparisons are used to increase or decrease

the shifting of the intermediate product in an effort to prevent an exception. As

the shifting of the intermediate product may be affected by these comparisons, the

generation of the sticky bit must be altered accordingly. The computation of the

shift amount for the intermediate product, the generation of the sticky bit, and the

handling of extreme numbers are described in the following subsections.

Intermediate Product Shifting

As mentioned earlier, the intermediate product may need to be shifted to achieve

the preferred exponent or to bring the product exponent into range. Calculating the

shift amount is dependent upon, among other things, the number of leading zeros in

the intermediate product. However, instead of waiting until the intermediate product

is generated to count the leading zeros, the latency of the multiplication is reduced

by determining a shift amount based on the leading zeros in both the multiplicand

and multiplier significands. With this approach, the pre-calculated shift amount may

be off by one since the number of significant digits in the final product may be one

less than the sum of the significant digits of each significand. Thus, the product may

need to be left shifted one additional digit at some point after the initial shift.

118

Except when IEIP < Emin, the shift is always to the left6. This is because

each partial product is added to the previous accumulated product with its LSD one

digit to the right of the decimal point. With an estimate of the significance of the

intermediate product based on the significance of each significand, SIP = SA + SB,

the shift left amount is determined as follows. If SIP > p, then one or more leading

zeros of the intermediate product may need to be shifted off to the left to maximize

the significance of the result. However, if SIP ≤ p, then the entire product will reside

solely in the lower half of the intermediate product register (assuming all the multiplier

significand digits have been processed). In the latter case, the less significant half of

the intermediate product register can be placed into the upper half, by left shifting

the intermediate product p digits. These two situations lead to the following equation

for the shift left amount, SLA.

SLA = min((2 ∗ p)− (SA + SB), p)

= min((2 ∗ p)− ((p− LZA) + (p− LZB)), p)

= min(LZA + LZB, p) (4.26)

where LZA and LZB are leading zero counts of the significands, CA7 and CB, respec-

tively.

In the event the actual significance of the intermediate product is one digit less

than the estimated significance, it may be necessary to left shift the intermediate

product one more digit after the initial left shift. The potential for a corrective

left shift of one digit necessitates maintaining an additional digit to the right of the

6This assumes every multiplier digit is processed during the partial product accumulation portion
of the multiplication algorithm.

7Note, CA is used instead of A as the discussion regards floating-point numbers. CA represents
the significand of the floating-point operand A.

119

decimal point. This digit is referred to as the guard digit and is analogous to the

guard bit used in BFP multiplication. The handling of the final left shift by one digit

occurs in the rounding portion of the algorithm and is described in Section 4.2.2.

The shift left amount, as estimated above, is dependent on all the multiplier

significand’s digits being processed. One design option is to exit the iterative portion

of the algorithm after processing the most significant nonzero digit of the multiplier

significand. Although this option complicates the processor’s instruction issue and

completion logic, substantial cycles may be saved for certain workloads. If early exit is

to be supported, the shift left amount calculation, as well as other design components,

needs to be altered accordingly.

Sticky Determination

After left shifting, any nonzero digits in the less significant half of the intermediate

product register must be evaluated in the context of the rounding mode to determine

if rounding up is necessary. As mentioned in the previous subsection, a corrective

left shift of one digit may be needed if the actual significance of the intermediate

product is one less than the sum of the significands’ significance. In the event the

corrective left shift is performed and the guard digit is shifted into the LSD position

of the more significant half of the intermediate product register, the next digit must

be maintained such that it can be determined if the remaining digits are less than

one half the Unit in the Last Place (ULP), exactly one half ULP, or greater than one

half ULP. Since this digit in the next less significant position to the guard digit is

critical to rounding, it is called the round digit, which is analogous to the round bit

in binary multiplication. The bits of the digits to the right of the round digit can all

be logically ORed to produce a sticky bit.

To improve the latency and area of DFP multiplication, it is desirable to know a

120

priori which digits will be used in the sticky bit calculation. Having such knowledge

allows the sticky bit to be generated on-the-fly with less hardware and wiring resource

than waiting until the entire intermediate product is available and then selecting which

digits should be ORed together. This can be readily accomplished in this design as

a non-redundant digit, formed during the accumulation of a new partial product,

enters the MSD of the less significant half of the intermediate product register while

the intermediate product is right shifted one position.

To determine when a digit being right shifted from the round digit position to

the next less significant digit position should be included in the sticky bit generation,

a counter is used. The starting value of this counter is initialized just prior to the

first partial product entering the intermediate product register and cleared between

operations. Whenever the counter value is greater than zero, the digit being shifted

out of the round digit position is ORed with the previous sticky bit value, which is

cleared between operations. The initial value of the sticky counter, SC, is generally

the significance of the intermediate product minus the format’s precision, unless this

difference yields a negative number. Thus,

SC = max(0, SIP − p)

= max(0, (p− LZA) + (p− LZB)− p)

= max(0, p− (LZA + LZB)) (4.27)

Note the counter is decremented twice before any nonzero data enters the digit

position to the right of the round digit position. This insures the two digits which

end up in the guard and round digit positions after left shifting are not included

in the sticky bit generation. Up to two more cycles can be taken to generate SC

so long as the value of the counter is correspondingly less than what is described in

121

Equation 4.27. Also, if the intermediate product needs to be left shifted one additional

digit, the sticky bit calculated in the manner above is still legitimate. This is because

the guard digit will be moved into the LSD position of the product, and the round

digit and sticky bit calculated in the manner above are all that is needed for rounding.

Sign Processing & Exception Handling

Sign processing is relatively straightforward. If the result is a number, the sign of

the result is simply the XOR of the signs of the operands. However, if the result is

NaN, IEEE 754-2008 does not specify the value of the sign bit. For ease of implemen-

tation, the sign logic used when the result is a number is also used when the result is

NaN.

As described in Section 2.4.4, there are four exceptions that may be signaled during

multiplication: invalid operation, overflow, underflow, and inexact. The detection

and handling of overflow, underflow, and inexact exceptions, being associated with

the rounding mechanism, is explained in the paragraphs following the description of

the rounding mechanism. The invalid operation exception behaves as described in

Section 2.4.4 except for the when one operand is a signaling NaN and the other is

a quiet NaN. Though not required behavior in IEEE 754-2008, this design converts

the signaling NaN to a quiet NaN and returns this as the result. This behavior was

chosen because the diagnostic information potentially contained in the signaling NaN

is deemed more important than the diagnostic information potentially contained in

the quiet NaN. The rounding mechanism is now described.

Rounding

Rounding is required when all the essential digits of the intermediate product

cannot be placed into the product significand or when overflow or underflow occurs.

122

The description of each rounding mode required by IEEE-2008 and its associated

condition(s) are listed in Table 4.6. In the case of rounding based solely on the

number of essential digits, rounding is accomplished by selecting either the shifted

intermediate product truncated to p digits or its incremented value. In order to

determine which value is to be selected, the following are needed: the rounding mode,

the product’s sign, the shifted intermediate product, including a guard digit, g, round

digit, r, and sticky bit, sb, and an adder.

Table 4.6: Rounding Modes, Conditions, and Product Overrides for Overflow

Condition for Round-up Product Override (Overflow)

Rounding Mode (Non-overflow) sIP == 0 sIP == 1

Nearest, ties to even (g > 5) ∨ ((g == 5) ∧ +∞ −∞
(l[3] ∨ (r > 0) ∨ sb))

Nearest, ties away from 0 g ≥ 5 +∞ −∞
Toward positive infinity sP ∧ ((g > 0) ∨ (r > 0) ∨ sb) +∞ −N

Toward negative infinity sP ∧ ((g > 0) ∨ (r > 0) ∨ sb) +N −∞
Toward 0 (truncate) none +N −N

+N = largest finite positive number, −N = largest finite negative number

The adder must be able to produce a non-redundant sum from its inputs, some of

which may be in a redundant form. Further, it must be able to add a one into either

its LSD position or its guard position. The two options for the position to inject a

one are necessary as the estimate of the shift left amount may be off by one, in which

case a corrective left shift is required. Though this may appear to require more than

one adder, both situations can be supported by using a single compound adder. The

following explains how a compound adder can be used to produce the truncated or

incremented intermediate results needed for rounding.

The inputs to the adder are the data in the p MSD positions of the shifted inter-

123

mediate product. To understand why it is sufficient to use only one compound adder

p digits wide, consider the four possibilities of adding a zero or a one into the LSD

or guard digit positions. Clearly, adding a zero into the guard digit position is the

same as adding a zero into the LSD position (so long as the original guard digit is

concatenated). The remaining two possibilities are related in the following way. If a

one is added into the guard digit position and a carry occurs out of the guard digit

position (i.e., g == 9), then this is equivalent to adding a one into the LSD position

and changing g to zero. Conversely, if a carry does not occur out of the guard digit

position (i.e., g < 9), then this is equivalent to adding a zero into the LSD position

and concatenating the incremented guard digit.

Before presenting the rounding scheme employing the compound adder, the fol-

lowing simplification is offered. This design need only contend with two alignment

choices of the final p result digits from the 2p shifted intermediate product. The two

alignment choices for the final result are the p digits starting in the MSD position or

the p digits starting with the digit to the right of the MSD position. These choices

are not affected by rounding, i.e., rounding will not cause a third alignment choice.

The choice between the aforementioned two possible locations for the final p digits

is affected by rounding, the preferred exponent, and the minimum exponent value.

These dependencies are described in the paragraphs following the proof of why round-

ing cannot cause a third alignment choice for the final product. To see why rounding

cannot cause a third alignment choice, the following proof is provided.

The proof is a generalization of the fact that two significands, each with signif-

icance equal to the precision, will yield an intermediate product with significance

2p−1 or 2p. If the significance of the intermediate product, SIP , is 2p−1, then there

will be a zero in the MSD position after left shifting the intermediate product (see

Section 4.2.2). In this case, an increment due to rounding will not propagate beyond

124

the MSD position. Alternatively, if SIP == 2p, then in order for carry-out to occur,

the minimum value of a string of nines p digits long must start in the MSD position.

Thus, the minimum value of the intermediate product needed for a carry-out can be

expressed as IP = CA×CB = 102p− (10p−1). However, the maximum intermediate

product is 102p − 10p − (10p − 1), as demonstrated below. Since the maximum in-

termediate product is 10p less than the minimum intermediate product needed for a

carry-out, the intermediate product will never need to be shifted to the right. Thus,

a third alignment choice for the final product cannot occur. The generalized proof

that rounding does not cause a third alignment choice is given below.

Proof of Rounding Not Causing a Third Alignment Choice

Given the range of significands, CA and CB, as:

10SA−1 ≤ CA ≤ 10SA − 1, and

10SB−1 ≤ CB ≤ 10SB − 1,

the intermediate product’s, CIP = CA × CB, range is:

10SA−1 × 10SB−1 ≤ CIP ≤ (10SA − 1)× (10SB − 1),

or equivalently:

10SA+SB−2 ≤ CIP ≤ 10SA+SB − 10SA − (10SB − 1).

Using the shift left amount, SLA = 2p− SA − SB, the

upper bound for the shifted intermediate product is:

CSIP ≤ CIP × 102p−SA−SB

or equivalently:

CSIP ≤ 102p − 102p−SB − (102p−SA − 102p−SA−SB
).

Substituting p for SA and SB, as this is when the shifted

intermediate product is at its maximum, yields:

CSIP ≤ 102p − 10p − (10p − 1).

125

This maximum achievable value of the shifted intermedi–

ate product is less than the minimum value required for

carry-out, 102p − (10p − 1), thus demonstrating rounding

does not cause a third alignment choice.

Returning to the function of rounding due to nonzero data in the guard, round,

or sticky positions of the shifted intermediate product, the description of the design’s

rounding scheme is presented. The use of a single compound adder to generate both

a p-digit significand and its incremented value, and the guarantee of no post-rounding

normalization, allows a simple and efficient rounding scheme to be developed which is

unique from recent binary rounding schemes such as those presented and referenced

in [138]. Here, C+0 and C+1 are used to represent the plus zero and plus one sums,

respectively, emerging from the compound adder.

First, an indicator, grsb, is set whenever there are nonzero digits to the right of

the LSD position of the shifted intermediate product. That is, grsb = (g > 0)∧ (r >

0)∧sb. This indicator, when set, may lead to a corrective left shift if there is a leading

zero in the compound adder’s outputs. The corrective left shift does not happen when

round up is to occur and the first p digits of the shifted intermediate product are zero

followed by all nines. In this case, a round up will produce a carry into the MSD

position and the corrective left shift must be preempted. Fortunately, this unique

case can be readily detected. It is the only situation in which the MSD of C+0 is a

zero and the MSD of C+1 is a nonzero.

Next, for the given rounding mode, two round up values, rucls==0 and rucls==1,

are computed for the cases of no corrective left shift by one and a corrective left shift

by one, respectively. The computations are based on the shifted intermediate product

and the round up condition(s) in Table 2.8. The difference between the two round up

126

values is for the case of a corrective left shift, the guard digit is treated as the LSD,

and the round digit is treated as the guard digit. As an example, if the rounding

mode is round toward zero, both round up values are zero. As another example, if

the rounding mode is round to nearest, ties away from zero and the LSD, guard,

round, and sticky values are 0, 5, 0, 0, then rucls==0 = 1 and rucls==1 = 0.

At this point, the guard digit must be incremented and an indicator developed

when the original guard digit equals nine. The incremented guard digit is needed

during a corrective left shift when round up is performed. The carry out of the

decimal digit adder can be used as the g == 9 indicator, g9. However, it is important

to note this carry out is never allowed to propagate into the LSD position of the

compound adder.

Using C+0, C+1, rucls==0, rucls==1, grsb, g, g+1, and g9, the algorithm presented

in Figure 4.12 realizes rounding for the DFP multiplier design. The algorithm is

presented as three distinct cases involving the MSDs of the two conditional sums,

C[0]+0 and C[0]+1. The fourth case, when the plus zero sum has a zero in its MSD

and the plus one sum has a nonzero digit in its MSD, cannot happen.

Though the rounding scheme of Figure 4.12 may appear complex, the choice is

simply between C+0, C+1, or these values left shifted one digit with either g or g + 1

concatenated. For those cases in which a left-shifted form of a conditional sum is

chosen, the intermediate exponent of the shifted intermediate product is decremented.

Handling Overflow and Underflow

In the case of rounding due to overflow, the product is rounded according to

column IV in Table 2.8. The table describes the product to be generated for each

rounding mode under default exception handling as specified in IEEE 754-2008.

Ultimately, the detection of overflow occurs by comparing the intermediate ex-

127

“No leading zeros, no corrective left shift”

1. C[0]+0 ! = 0 and C[0]+1 ! = 0

(a) rucls==0 == 0 ⇒ CP = C+0

(b) rucls==0 == 1 ⇒ CP = C+1

“Leading zeros, possible corrective left shift”

2. C[0]+0 == 0 and C[0]+1 == 0

(a) grsb == 0

i. IESIP == PE or IESIP ≤ Emin ⇒ CP = C+0

ii. IESIP > PE and IESIP > Emin ⇒ CP = (C+0 ¿ 1) || g

(b) grsb == 1 and IESIP ≤ Emin

i. rucls==0 == 0 ⇒ CP = C+0

ii. rucls==0 == 1 ⇒ CP = C+1

(c) grsb == 1, IESIP > Emin, and rucls==1 == 0 ⇒ CP = (C+0 ¿ 1) || g
(d) grsb == 1, IESIP > Emin, and rucls==1 == 1

i. g9 == 0 ⇒ CP = (C+0 ¿ 1) || (g + 1)

ii. g9 == 1 ⇒ CP = (C+1 ¿ 1) || (g + 1), note g + 1 == 0

“Zero followed by all nines”

3. C[0]+0 == 0 and C[0]+1 ! = 0

(a) – (c) same as in Case 2

(d) grsb == 1, IESIP > Emin, and rucls==1 == 1 ⇒ CP = C+1

Figure 4.12: Rounding Scheme

ponent of the rounded intermediate product, IERIP , with the maximum exponent,

Emax. However, the following steps are taken prior to this comparison in an effort to

keep the intermediate exponent in range. If the intermediate exponent of the inter-

mediate product (IEIP in Equation 4.24) minus the shift left amount (SLA in Equa-

128

tion 4.26) is greater than Emax, then SLA is increased to subsequently decrease the

intermediate exponent of the shifted intermediate product (IESIP in Equation 4.25).

SLA can only be increased to the extent all the leading zeros of the intermediate

product are removed. If there are only enough leading zeros to bring IESIP down to

at least Emax+1, then it is possible there will be one more leading zero in the shifted

intermediate product than estimated, and a left shift of one digit can occur during

rounding to prevent overflow. Note the sticky counter (SC in Equation 4.27) must

be decreased by the same amount SLA is increased. After adjusting SLA and SC,

shifting the intermediate product, and rounding the shifted intermediate product,

IERIP is compared to Emax. If IERIP > Emax, then overflow has occurred and

the rounding mode and product sign are used to select a product based on Table 2.8.

Both the overflow and inexact exceptions are signaled.

Averting underflow is similar to that described for overflow. The calculated SLA

must be decreased by the amount which would lead IESIP to drop below Emin. The

sticky counter must be increased by the same amount SLA is decreased. Dissimilar

from overflow, however, is the following behavior. If IEIP < Emin, then SLA is set

to zero, and the intermediate product is shifted to the right to bring the IESIP into

range. To accomplish the right shift, the iterative portion of the algorithm is allowed

to continue beyond the processing of all the multiplier significand digits. Partial

products of value zero are used in the additional iterations so as not to alter the

value of the intermediate product. The number of additional iterations is equal to

the amount by which Emin exceeds IEIP . Note the sticky counter must be increased

by the number of additional iterations. The number of additional iterations is at

most p + 2 as this amount is guaranteed to place the most significant nonzero digit

of any accumulated product beyond the round digit position. Thus, with a properly

adjusted sticky counter, all the intermediate product data is ORed into the sticky bit.

129

After clearing SLA, adjusting SC, “shifting” the intermediate product, and rounding

the shifted intermediate product, IERIP is compared to Emin. If IERIP < Emin

and grsb of the chosen compound adder output is one, then underflow has occurred.

Additionally, if IERIP == Emin, the MSD of the chosen compound adder output

is zero, and grsb of the chosen compound adder output is one, then underflow has

occurred. Both the underflow and inexact exceptions are signaled.

One design consideration is whether or not to allow underflow to have a variable

latency. The number of additional iterations need only be min(p + 2, Emin− IEIP).

However, to keep the processor’s instruction issue and completion logic simple, it may

be best to stall for p+2 cycles always. If handling underflow with fewer fixed cycles is

desired, the existing left shifter can be altered to support right shifting as well. Since

in this design the shifter is before the adder (i.e., the more significant half of the

intermediate product is in a redundant form), the adder would need to be widened

to support a greater number of digit positions containing redundant data.

There are a number of notable implementation choices that were made when

designing this DFP multiplier, including: leveraging the leading zero counts of the

operands’ signficands, passing NaNs through the dataflow with minimal overhead,

and handling gradual underflow via minor modification to the control logic. Equa-

tions 4.26 and 4.27, and indirectly 4.25, use the leading zero counts of the signifi-

cands. This is intentional as the determination of leading zeros is a common function

in floating-point units [139]. Once each digit is identified as zero or nonzero, the

generation of the leading zero count is the same as that for a BFP mantissa. As the

accumulation of partial products is iterative, a single leading zero counter is used to

determine successively the leading zero counts of CA and CB. If an operand is NaN,

that operand’s NaN payload is used when forming the result. Instead of support-

ing alternative paths through the dataflow, the control logic passes CA through the

130

dataflow by multiplying it by 1. If operand B is NaN, CB is held in the less significant

portion of the intermediate product register while the control logic overrides the shift

left amount such that CB is left shifted into the more significant half of the shifted

intermediate product register. As for gradual underflow, the control logic extends

the iterative partial product accumulation portion of the algorithm and successively

adds partial products equal to zero such that the accumulated partial product is right

shifted until IEIP increases to Emin or all nonzero data are shifted into the sticky

bit. This support of gradual underflow extends the latency of the multiplier from 25

cycles to a maximum of 43 = 25 + (p + 2) cycles.

The next subsection describes how the components in this subsection are combined

to realize a DFP multiplier.

4.2.3 Implementation and Analysis

Figure 4.13 shows all the design components from the previous subsection together

to realize DFP multiplication. The block-level drawing is of the bottom datapath por-

tion of the DFP multiplier design, beginning with the 2p-digit intermediate product

register and a sticky bit that was generated on-the-fly (see Section 4.2.2). The top

datapath portion of the design, ending with the same intermediate product register,

is shown in Figure 4.11. Not shown in either design drawing is the control logic,

which is where the intermediate exponents, the sticky counter, the shift left amount,

and the rounding control are calculated.

Referring again to Figure 4.13, the first step is to shift the intermediate product

based on the shift left amount, SLA (described in Section 4.2.2), and store the p + 2

digit output in the shifted intermediate product register. The two additional digits

are needed for the guard and round digits. Then, in support of the rounding scheme

131

Intermediate Product Register (Master/Slave with Reset)
 B/Intermediate Product Register (Master/Slave)

5 bits/digit (data in carry-save form)
 4 bits/digit

Compound Adder (p Digits)

Shifted Non-Redundant Product Register (Master/Slave)

l
 g
 r

l

guard

digit

(4 bits)

sum

(4 bits)

carry

(1 bit)

Final Shift Left By One

SLA

Final Product Register (Master/Slave)

On-the-fly sticky

generation

SC

digit from round

digit position

4 bits/digit

Legend

SC = Sticky Counter

SLA
 = Shift Left Amount

l
,
g
,
r
 = LSD, guard, and round digit positions

sb
 = sticky bit

Note

Less significant half of intermediate product

register and shifted non-redundant product

register can be shared

sb

sticky

bit

(1 bit)

round

digit

(4 bits)

g
 r
 sb

sb

Round

5 bits/digit

2:1 Multiplexor

C
+0

C
+1

Shifted Intermediate Product Register (Master/Slave)

C
P

Location of decimal point

Left Shifter

l

SIP

IP

C
+1
 C
+0

C
+0

C
+0

Figure 4.13: Bottom Portion of Iterative DFP Multiplier Design

presented in Section 4.2.2, a compound adder receives the data stored in the shifted

intermediate product register. Since the data are either in non-redundant form or

in sum and carry form (four sum bits and one carry bit), a unique compound adder

is needed. For the sum portion of the addition, the sumi + carryi + 0 and the

sumi + carryi + 1 is generated for each digit position, i. For the carry portion of

the addition, a digit generate equal to si[0] ∧ si[3] ∧ ci and digit propagate equal

to si[0] ∧ (si[3] ∨ ci) are produced. The digit propagate and generate are then fed

132

into a carry network that generates the carries to select the appropriate digits to

yield C+0 and C+1. The compound adder is only p digits long, as described in

Section 4.2.2. Once the two compound adder outputs are available in registers (i.e.,

C+0 and C+1), the rounding logic produces the product significand, CP , based on the

rounding scheme in Figure 4.12.

Register transfer level models of both the presented 64-bit (16-digit) iterative

DFP multiplier [41] and its predecessor iterative DFXP multiplier [39] were coded

in Verilog. Both designs were synthesized using LSI Logic’s gflxp 0.11um CMOS

standard cell library and the Synopsys Design Compiler. To validate the correctness

of the design, over 500, 000 testcases covering all rounding modes and exceptions were

simulated successfully on the pre-and post-synthesis design. Publicly available tests

include directed-random testcases from IBM’s FPgen tool [140] and directed tests

available at [141].

Table 4.7 contains area and delay data for the iterative DFXP and DFP multiplier

designs presented in Section 4.1.1 and Section 4.2, respectively. The values in the FO4

Delay column are based on the delay of an inverter driving four same-size inverters

having a 55ps delay, in the aforementioned technology. The critical path in the

iterative DFP multiplier is in the stage with the 128-bit barrel shifter, while for the

iterative DFXP multiplier it is the decimal 4:2 compressor.

As shown in Table 4.7, extending the iterative DFXP multiplier design to support

DFP multiplication affected the area, cycle time, latency, and initiation interval. The

area of the DFP design is roughly twice that of the DFXP design. Approximately

20% of the area in the DFP design is associated with the increase in latches and

associated logic. Another 20% is consumed in realizing the leading zero count, shift

count, sticky counter logic, and left shift logic. And roughly 10% of the area is used

for the expanded function of the adder and the rounding logic. The cycle time of the

133

Table 4.7: Area and Delay of Iterative Multipliers (DFXP vs. DFP)

Iterative (Decimal CSAs)

p = 16 DFXP [39] DFP [41]

Latency (cycles) 20 25

Throughput (ops/cycle) 1/17 1/21

Cell count 59,234 117,627

Area (um2) 119,653 237,607

Delay (ps) 810 850

Delay (FO4) 14.7 15.4

DFP multiplier is 5% higher than the DFXP design, though a customized shifter may

be able to reduce this gap. The latency of the DFP multiplier is five cycles longer

than the DFXP multiplier, and the dispatch spacing between multiply operations

increased by four cycles.

4.2.4 Summary

The iterative DFP multiplier presented in this section combines the necessary

floating-point extensions of exponent processing, rounding, and exception detection

and handling to the iterative DFXP multiplier design of [39]. The resultant multiplier

design is compliant with IEEE 754-2008. Novel features of the multiplier include sup-

port for DFP numbers, on-the-fly generation of the sticky bit, early estimation of the

shift amount, and efficient decimal rounding. All the presented design components,

except the on-the-fly generation of the sticky bit, can be applied to parallel DFP

multipliers, as illustrated in Section 5.2.

134

Chapter 5

Parallel Multiplier Designs

The multiplier designs presented in this chapter generate a reduced set of multi-

plicand multiples and accumulate all the partial products in parallel. As the accu-

mulation of partial products occurs in parallel, these designs are pipelined to allow

a throughput of one. This performance, as will be shown, comes at the expense of

area. The reader is referred to Section 3.3 for an overview of the fundamental steps

of hardware multiplication.

The work of two research teams who developed parallel DFXP multiplier designs

is presented in this chapter for completeness and for comparison. The design of Lang

and Nannarelli [5] appears in Section 5.1.1 and the designs of Vazquez, Antelo, and

Montuschi appear in Section 5.1.2. My research [8], in collaboration with Schulte

and Hickmann, on extending a parallel DFXP multiplier design of Vazquez et al. to

support DFP multiplication as defined in IEEE 754-2008 is described in Section 5.2.

A comparison is made between the iterative and parallel DFXP multiplier designs

and between the iterative and parallel DFP multiplier designs. Lastly, commentary

from [42] is provided that describes the preferred usage for each multiplier design.

135

5.1 Fixed-point Designs

The parallel DFXP multiplier designs described in this chapter feature the recod-

ing of the multiplier operand to reduce the number of multiplicand multiples, and

the use of carry-save addition for the accumulation of partial products. The design of

Section 5.1.1 uses decimal CSAs for the partial product accumulation, while the de-

sign of Section 5.1.2 uses binary CSAs. The more salient and distinguishing features

of these two parallel DFXP multiplier designs are presented along with area and delay

data. A comparison is made between the iterative and parallel DFXP multipliers.

5.1.1 Multiplier Employing Decimal Carry-Save Adders

The parallel DFXP multiplier of Lang and Nannarelli [5] recodes the multiplier

operand such that five multiplicand multiples (−A, 2A, −2A, 5A, 10A) need be gener-

ated and stored1 for use in developing the partial products. The partial products are

then accumulated through a reduction tree of decimal CSAs (developed in [39]). Re-

ferring to Figure 3.6 on page 63, this multiplier design recodes the multiplier operand

(Figure 3.6.a), generates the partial products in parallel (Figure 3.6.b), accumulates

the partial products in parallel (Figure 3.6.c), and then removes the redundancy in the

intermediate product emerging from the partial product reduction tree (Figure 3.6.e)

to yield the final product. This design is the first published parallel DFXP multiplier.

Algorithm

A flowchart-style drawing of the algorithm described in [5] appears in Figure 5.1.

After reading in the operands, the multiplier operand is recoded according to Table 5.1

while the multiplicand multiples are being produced. That is, the multiplier operand

1The 10A multiple can be generated on the fly from the original multiplicand by shifting left one
digit.

136

is recoded in such a way that all the multiples can be realized from the multiple set

±A, ±2A, 5A, 10A. These multiples are precomputed very quickly as doing so does

not require carry propagation [105]. The negative multiples do require several gate

delays to produce as the BCD-8421 format is not self-complementing. This portion of

the algorithm appears in the blocks labeled “Generate Multiplicand Multiples” and

“Recode Multiplier” in Figure 5.1.

Read Operands

Write Result

Add to Yield Final Product

Reduce Partial Products

(1 BCD sum and 1 1-bit carry)

Select Multiplicand Multiples

Generate Partial Product

(16 BCD sums and 16 1-bit carries)

Generate

Multiplicand

Multiples

{-A,
2A
, -
2A
,
5A
,
10A
}

Recode

Multiplier

({0, 5, 10} +

{-2, -1, 0, 1, 2})

Figure 5.1: Flowchart of Parallel DFXP Multiplier Using Decimal CSAs [5]

Once the multiplicand multiples are generated and the multiplier operand is re-

coded, select signals are created to steer the appropriate multiples into a bank of

137

Table 5.1: Multiplier Operand Digit Recoding Scheme [5]

Multiplier Digit Secondary Multiples

(decimal value of bi) b′i + b′′i

0 0 + 0

1 0 + 1

2 2 + 0

3 5 + -2

4 5 + -1

5 5 + 0

6 5 + 1

7 5 + 2

8 10 + -2

9 10 + -1

decimal CSAs to produce the partial products (see blocks “Select Multiplicand Mul-

tiples” and “Generate Partial Product”, respectively). The partial products then

enter a partial product reduction tree comprised of decimal CSAs. This step is la-

beled as “Reduce Partial Products” in the flowchart figure. Emerging from the partial

product reduction tree are two vectors, which are then added (shown in the “Add to

Yield Final Product” block) before the result is written.

Features

As the internal format of each decimal digit is BCD (i.e, BCD-8421), the nega-

tive multiplicand multiples are produced by subtracting each digit from 9 (i.e., the

diminished-radix complement) and then adding a 1 into the partial product accumu-

lation tree at the LSD position of the non-negative secondary multiple, b′i. Although

some secondary multiples are negative, each partial product (i.e., b′i + b′′i > 0) is non-

138

negative, and therefore, no sign extension is necessary. The 10A multiple is produced

by left-shifting the multiplicand operand one digit.

The decimal CSAs used in the partial product reduction tree are the same as those

developed for the design in [39] (see Section 4.1.1). For a p = 16 digit multiplier, there

are 32 multiplicand multiples which enter 16 decimal CSAs. The resultant 16 partial

products, represented by 16 vectors of BCD sum digits and 16 vectors of one-bit

carries, are reduced via six levels of decimal CSAs as shown in Figure 5.2. Overall,

7 levels of decimal CSAs are needed. One novel aspect of this tree is the use of a

counter to convert the available single-bit carries into BCD digits for accumulation

further down the tree. In the worst-case column of the partial product array, there

are 16 BCD sum digits and 16 carry bits to be reduced. All 16 BCD sum digits and

half of the carry bits enter 8 decimal CSAs, while the remaining 8 carry bits enter

the aforementioned counter to produce a single BCD sum digit.

At each level of CSAs, there are a number of single-bit carries for which there is no

CSA to enter. These are handled by another instance of a counter, the output of which

enters a final decimal CSA. After the last level of decimal CSAs, the intermediate

product in decimal carry-save form enters a simplified BCD adder analogous to the

one described in [39,41].

Implementation and Analysis

The authors of [5] implemented their design in a HDL and synthesized it into

STM 90nm CMOS standard cells using the Synopsys Design Compiler. In order to

compare with the DFXP multiplier of [39], which was synthesized using a 110nm

technology, a scaling factor of ∼1.2 was used. Further, Lang et al. chose to fix the

cycle time at the equivalent of 810ps, the cycle time of the design presented in [39],

which yielded a pipeline depth of 11 cycles. In Table 5.2, the latency, throughput,

139

CSA

CSA
=
 4-bit decimal
CSA
 (3:2)

CNT
 =
 8-bit binary to BCD counter

X
=
 BCD-8421 sum digit

O
=
 Possible carry-out of multiple

c
=
 carry bit

16 BCD-8421 sum digits and 16 carry bits

Legend

Partial

Product

Array

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

OXXXXXXXXXXXXXXXX

cccccccccccccccc

CSA
 CSA
 CSA
 CSA
 CSA
 CSA
 CSA
 CNT

X
X
c
X
X
c
X
X
c
X
X
c
X
X
c
X
X
c
X
X
c
X
X
c
 8
c's

CSA

CSA

7
c's

CSA
CSA
CSA
CSA

CSA
CSA

CSA
 CNT

0

Figure 5.2: Partial Product Reduction Tree Employing Decimal CSAs [5]

area, and delay are presented for these two designs, with the numbers for the design

of [5] scaled back to the technology used in [39]. From the table, one can conclude

that parallel DFXP multiplication is a possibility for those situations in which area

can be traded for high throughput and low latency.

140

Table 5.2: Area and Delay of DFXP Multipliers (Iterative vs. Parallel)

Iterative Parallel

p = 16 (Decimal CSAs) [39] (Decimal CSAs) [5]

Latency (cycles) 20 11

Throughput (ops/cycle) 1/17 1

Cell count 59,234 180,000†
Area (um2) 119,653 360,000‡
Delay (ps) 810 810‡
Delay (FO4) 14.7 14.7‡
† Approximated

‡ Scaled

Summary

The design of Lang and Nannarelli [5] recodes the multiplier operand to enable a

reduced set of secondary multiples, reduces the 2p partial products down to a single

intermediate product in decimal carry-save form through decimal CSAs, and then

performs a final addition through a simplified BCD adder. This multiplier uses the

same multiplier operand recoding scheme as [40] and effectively unrolls the iterative

partial product reduction scheme of [39], albeit supplementing the decimal CSAs with

counters to achieve a novel parallel DFXP multiplier. Although the area is signifi-

cantly larger than the iterative DFXP multiplier of [39], the maximum throughput

is one result per cycle and the latency is considerably better at a comparable cycle

time.

141

5.1.2 Multiplier Employing Binary Carry-Save Adders

The parallel DFXP multipliers of Vazquez, Antelo, and Montuschi [6] utilize three

different multiplier operand recodings, one employed in [40] and [5], such that only a

reduced set of multiplicand multiples need be generated. The three recodings trade-off

multiplicand multiple generation delay against the number of partial products to be

reduced. That is, the recodings requiring a secondary multiple set in which each can

be generated very quickly (i.e., without carry propagation) lead to a greater number

of partial products to be reduced. The partial products are then accumulated through

a reduction tree of binary CSAs. Referring to Figure 3.6 on page 63, this multiplier

design recodes both the multiplicand and multiplier operands (Figure 3.6.a), gener-

ates the partial products in parallel (Figure 3.6.b), accumulates the partial products

in parallel (Figure 3.6.c), recodes the intermediate product emerging from the par-

tial product reduction tree (Figure 3.6.d), and then removes the redundancy in the

intermediate product (Figure 3.6.e) to yield the final product.

Algorithm

A flowchart-style drawing of the algorithm described in [6] appears in Figure 5.3.

Note that although three different multiplier operand recoding schemes are presented

by Vazquez et al. and shown in the flowchart, a designer implements only one scheme.

The flow of this multiplier is similar to that described in the previous subsection for

the design of Lang et al. [5]. One fundamental difference, however, is the use of binary

CSAs for the partial product accumulation. This is detailed in the next subsection.

The algorithm starts with the reading of the operands, after which, the multiplier

operand is recoded according to the chosen scheme, as shown in Table 5.3. The Radix-

5 recoding, as the authors named it, uses a decimal carry-propagate adder to develop

142

Read Operands

Write Result

Add to Yield Final Product

Reduce Partial Products

(1 BCD-4221 sum and 1 BCD-4221 carry)

Select Multiplicand Multiples and

Generate Partial Products

Generate

Multiplicand

Multiples

(BCD-4221)

Recode

Multiplier

Radix-10

{
2A
,
3A
,
4A
,
5A
}

Radix-4

{
2A
,
4A
,
8A
}

Radix-5

{
2A
,
5A
}

or

or

Radix-10

{-5, -4, ..., +4, +5}

Radix-4

{0, 4, 8} +

{-2, -1, 0, +1, +2}

Radix-5

{0, 5, 10} +

{-2, -1, 0, +1, +2}

or

or

Radix-10

p+1

Radix-4

2p

Radix-5

2p

Prepare for Final Add

Figure 5.3: Flowchart of Parallel DFXP Multiplier Using Binary CSAs [6]

143

the 3A multiplicand multiple, while the multiplicand multiples needed for the other

recoding schemes can be generated relatively quickly without carry propagation. In

parallel and in accord with the chosen multiplier recoding scheme, the multiplicand

multiples are produced. This portion of the algorithm appears in the blocks labeled

“Generate Multiplicand Multiples” and “Recode Multiplier” in Figure 5.3.

Once the multiplicand multiples are generated and the multiplier operand is re-

coded, select signals are created to steer the appropriate multiples into a bank of

XORs to selectively complement the multiples followed by a bank of binary CSAs to

produce the partial products (see blocks “Select Multiplicand Multiples” and “Partial

Product Generation”, respectively). There are p+1 partial products with the Radix-

10 scheme and 2p partial products for the Radix-5 and Radix-4 schemes2. The partial

products then enter a partial product reduction tree comprised of binary CSAs, la-

beled as “Partial Products Reduction” in the flowchart figure. Emerging from the

partial product reduction tree are two vectors, which are first converted to BCD-8421

and biased (“Prepare for Final Add” block), and then added (“Add to Yield Final

Product” block) before the result is written.

Features

The most novel aspect of [6] is the use of binary CSAs for the partial product

reduction. This is made possible by generating the multiplicand multiples in the

BCD-4221 encoding (see Section 3.1). BCD-4221 allows the use of binary addition

within each decimal digit position, since all 16 combinations of this four-bit code

are valid decimal numbers. Further, when using binary CSAs, the emerging sum

vector can be used directly. The only complication is in the generation of the carry

2Vazquez, et al chose the terms Radix-4, Radix-5, and Radix-10 to describe the different recoding
schemes. Typically in this context, the term radix is used to imply the number of partial products.

144

Table 5.3: Multiplier Operand Digit Recoding Schemes [6]

Multiplier Digit Radix-10 ([5, 40]) Radix-4 Radix-5

(decimal value Secondary Multiples Secondary Multiples Secondary Multiples

of bi) b′i + b′′i b′i + b′′i b′i + b′′i

0 0 + 0 0 + 0 0 + 0

1 0 + 1 0 + 1 0 + 1

2 0 + 2 0 + 2 0 + 2

3 0 + 3 4 + -1 5 + -2

4 0 + 4 4 + 0 5 + -1

5 10 + -5† 4 + 1 5 + 0

6 10 + -4 4 + 2 5 + 1

7 10 + -3 8 + -1 5 + 2

8 10 + -2 8 + 0 10 + -2

9 10 + -1 8 + 1 10 + -1

† (10 +−5) is chosen over (0 + 5) to absorb any possible increment

vector emerging from the binary CSA, as these bits need to be decimal doubled.

Decimal digit doubling is not as straightforward as simply left shifting by one bit

as is done to realize binary doubling. Vazquez et al. observed that by converting

the carry output of the binary CSA from BCD-4221 to BCD-5211 through a simple

operation, and then left shifting by one bit, decimal doubling is achieved. A final

useful benefit of having the multiplicand multiples comprised of BCD-4221 digits is

that this encoding is self-complementing, which is desirable when creating negative

multiplicand multiples.

For a p = 16 digit multiplier, there are 32 partial products for the Radix-4 and

Radix-5 multiplier operand recoding schemes and 17 partial products for the Radix-

10 scheme. An additional partial product of 1A is needed for the Radix-10 scheme

when the most significant digit of the multiplier operand is greater than five. In this

145

case a negative partial product is chosen for this digit position, and the next more

significant digit is incremented (i.e., zero to one).

The 17 partial products for the Radix-10 scheme are reduced as shown in Fig-

ure 5.4. (To see the reduction trees for the Radix-4 and Radix-5 multiplier operand

recoding schemes, the reader is referred to [6].) Due to the aligning of the partial

products based on their respective weights, the number of decimal digits to be reduced

varies from 2 to p+1. For a p = 16 design, 7 levels of binary CSAs and three decimal

doublers are traversed in the worst-case column. After the last level of binary CSAs,

the intermediate product is in carry-save form as a vector of BCD-4221 sum digits

and BCD-4221 carry digits, the carry digits having yet to be decimal doubled. A

value of six is added to each sum digit while it is converted to BCD-8421. In parallel,

the BCD-4221 carry digits are converted to BCD-5421 (see Table 3.1) such that left

shifting each digit by one bit yields properly weighted digits in the BCD-8421 encod-

ing. The two vectors of BCD-8421 digits are then added using a 128-bit wide binary

quaternary tree modified to support decimal digits [114]. This adder is described in

Section 3.2.

Implementation and Analysis

The authors of [6] estimated area and delay based on logical effort for their designs

and the design of Lang et al. [5]. Their estimates of the parallel DFXP multiplier using

the Radix-10 recoding scheme show a 22% reduction in delay and a 42% reduction

in area over the design presented by Lang et al. In Table 5.4, latency, throughput,

area, and delay information is presented for the iterative DFXP multiplier of [39],

the parallel DFXP multiplier of [5], and a multiplier implemented by Hickmann et

al. [8] which is based on the design using the Radix-10 recoding scheme as described

146

CSA

2

Location of decimal point

CSA

2

CSA

2

CSA

2

CSA

2

CSA

2

=
 4-bit binary
 CSA
 (3:2)

x2

10

=
 Decimal digit
 doubler

X
=
 BCD-4221 digit

O
=
 Possible carry-out of multiple

T
=
 Possible +1 to complete 10's-

complement of next less

significant partial product

s
=
 Sign bit

S
=
 111s

(#)
=
 Respective weight of digit

17 BCD-4221 digits from 17 partial products

CSA

2

CSA

2

CSA

2

CSA

2

CSA

2

CSA

2

CSA

2

Legend

CSA

2

x2

10

x2

10

x2

10

x2

10

x2

10

x2

10

x2

10

x2

10

CSA

2

x2

10

CSA

2

(2)
 (1)

(1)

(2)
 (1)

(1)

(1)

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(2)

(4)

(4)

(4)
(8)

(4)

(4)
 (2)

(2)
 (2)
 (2)
 (2)
 (2)
(1)
 (1)
 (1)
 (1)
 (1)

(2)
 (1)
(1)
(2)

(2)

(1)

Partial Product Array

sSO
XXXXXXXXXXXXXXXX

 SOX
XXXXXXXXXXXXXXXT

SOXX
XXXXXXXXXXXXXXT

SOXXX
XXXXXXXXXXXXXT

SOXXXX
XXXXXXXXXXXXT

SOXXXXX
XXXXXXXXXXXT

SOXXXXXX
XXXXXXXXXXT

SOXXXXXXX
XXXXXXXXXT

SOXXXXXXXX
XXXXXXXXT

SOXXXXXXXXX
XXXXXXXT

SOXXXXXXXXXX
XXXXXXT

SOXXXXXXXXXXX
XXXXXT

SOXXXXXXXXXXXX
XXXXT

SOXXXXXXXXXXXXX
XXXT

SOXXXXXXXXXXXXXX
XXT

OXXXXXXXXXXXXXXX
XT

XXXXXXXXXXXXXXXX
 T

Figure 5.4: Partial Product Reduction Tree: Radix-10 Recoding, Binary CSAs [6]

by Vazquez et al.. Though the area and delay numbers for the Lang et al. vs. the

Vazquez et al. designs are not as different as estimated in [6], the latency difference

is very significant. Note the area and cell count comparison between the two parallel

designs is not entirely legitimate as their latencies are different. Further, the design

of Vazquez et al. was estimated using logical effort which can often underestimate

2Some differences exist between the implementations, as described in Section 5.2.

147

the physical overhead of wiring, as they acknowledge in [6].

Table 5.4: Area and Delay of DFXP Multipliers (Iterative vs. Parallel)

Iterative Parallel

p = 16 (Dec. CSAs) [39] (Dec. CSAs) [5] (Bin. CSAs) [6]

Latency (cycles) 20 11 8

Throughput (ops/cycle) 1/17 1 1

Cell count 59,234 180,000† 182,791

Area (um2) 119,653 360,000‡ 369,238

Delay (ps) 810 810‡ 840

Delay (FO4) 14.7 14.7‡ 15.3

† Approximated

‡ Scaled

Summary

The designs of Vazquez, Antelo, and Montuschi offer three different multiplier

operand recoding schemes to enable a reduced set of secondary multiples, reduce the

partial products down to an intermediate product in decimal carry-save form (two,

four-bit digits) through binary CSAs, and then perform a final addition through a

bias and correction addition scheme. The novelty of Vazquez et al.’s designs is in

overloading binary CSAs to support the carry-save addition of decimal digits, this

being facilitated by converting the BCD digits into BCD-4221 digits.

5.1.3 Summary of Parallel DFXP Designs

The parallel DFXP multipliers developed by Vazquez et al. have a performance

and area advantage over the design developed by Lang et al., in its current form. The

148

advantages are due to the use of binary CSAs in the partial product reduction tree.

Binary CSAs are smaller and faster than decimal CSAs. And although decimal dou-

bling on the carry digits is needed at various points during the reduction, a correction

is not needed after each level of CSAs. Further, because binary CSAs are employed,

this architecture can be extended to support binary multiplication [6].

For these reasons, a design developed by Vazquez et al. was chosen over the design

by Lang et al. to be extended to support DFP multiplication. Namely, the Radix-

10 multiplier recoding scheme was selected. Even though this scheme uses a p-digit

decimal carry-propagate adder to produce the multiplicand triple, this addition can

be accomplished with less hardware and in a similar delay as it takes to reduce 2p

partial products to roughly p + 1 partial products. The description of the parallel

DFP multiplier design appears in the following section.

5.1.4 Combined Binary/Decimal, Fixed-point Design

As mentioned in the last subsection, the use of binary CSAs for the reduction

of partial products [6] enables the partial product reduction tree to support both

binary data and decimal data. As described in [6], the sum bits emerging from the

binary CSA can be used directly regardless of whether the input is a binary integer

or a decimal digit. However, the carry bits emerging from the binary CSA must be

doubled, and this doubling is different depending on the input data type. Doubling

a binary integer simply involves left shifting the bits by one. Whereas, doubling a

decimal digit in BCD-4221 effectively involves the conversion of the digit into BCD-

5211 followed by left shifting the bits by one. A control signal indicating if the data

are binary or decimal is needed to control the behavior of the doubling circuitry.

In [7], Hickmann3, Schulte, and I describe several notable improvements over the

3lead author

149

combined binary Radix-4/decimal Radix-5, fixed-point multiplier design presented

in [6]. Specifically, improving the delay of the combined binary/decimal doubling

circuit, improving the delay of the combined binary/decimal partial product reduc-

tion tree by removing all instances of 4:2 compressors, and improving the delay of

the binary datapath in the partial product reduction tree by splitting the combined

binary/decimal partial product reduction tree into a dedicated binary reduction tree

and a dedicated decimal reduction tree just before the first required instance of a

combined binary/decimal doubler.

Algorithm

A flowchart-style drawing of the algorithm described in [7] appears in Figure 5.5.

The algorithm for this design is the same effectively as that presented in Section 5.1.2.

The algorithm starts with the reading of the operands, after which, the multiplier

operand, when binary, is recoded according to the Booth Radix-4 scheme [142] as

shown in Table 5.5 or, when decimal, is recoded according to the Radix-5 scheme as

shown in Table 5.3. Thus, the binary multiplicand multiple set of 1A, 2A, 4A, 8A and

the decimal multiplicand multiple set of 1A, 2A, 5A, 10A are needed. An example

showing the recoding for a 16-bit binary/4-digit decimal multiplier operand appears

in Figure 5.6. Note that two multiplicand multiples are chosen for every four binary

bits, regardless of whether the operands are binary or decimal data. In parallel with

the multiplier operand recoding, the multiplicand multiples are created in BCD-4221

form. Once the multiplicand multiples are generated and the multiplier operand is

recoded, select signals are created to steer the appropriate multiples into a bank of

XOR gates to selectively complement the multiples, followed by a bank of binary

CSAs to produce the partial products. The 2p + 1 partial products are then reduced

via a reduction tree comprised of binary CSAs. Emerging from the partial product

150

reduction tree are two vectors which are first converted to BCD-8421, biased, and

then added, before the result is written.

Read Operands

Write Result

Add to Yield Final Product

Reduce Partial Products

(sum and carry)

Select Multiplicand Multiples and

Generate Partial Products

Binary Radix-4

{
1A
,
2A
,
4A
,
8A
}

Radix-5

{0, 5, 10} +

{-2, -1, 0, +1,

+2}

Prepare for Final Add

Decimal

Radix-5

{
2A
,
4A
,
8A
}

 Generate

Multiplicand Multiples

Recode

Multiplier

Booth Radix-4

{-8, -4, 0, 4, 8}

+ {-2, -1, 0, +1,

+2}

Figure 5.5: Flowchart of Parallel BFXP/DFXP Multiplier Using Binary CSAs [7]

151

Table 5.5: Binary Multiplier Operand Booth Radix-4 Recoding Scheme

Multiplier Bits Recoded Four Bits

(overlapping triplet) b′i + b′′i

0 0 0 0 + 0

0 0 1 4 + 1

0 1 0 4 + 1

0 1 1 8 + 2

1 0 0 -8 + -2

1 0 1 -4 + -1

1 1 0 -4 + -1

1 1 1 0 + 0

1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0

if binary

Booth Radix-4

recode

0*A

1*4*A

-1*A

1*4*A

-1*A

2*4*A

1*A

-2*4*A

1*A

if decimal

Radix-5

recode

10*A + -1*A

5*A + 2*A
 5*A + -1*A

operand

5*A + -2*A

Figure 5.6: Binary/Decimal Multiplier Operand Recoding Example [7]

Features

One delay bottleneck in a combined binary/decimal partial product reduction

tree based on decimal data being in BCD-4221 form, is that of the combined four-bit

binary/decimal doubler. In [6], when performing binary multiplication, the doubler

152

simply left shifts the incoming four bits by one bit position. When performing decimal

multiplication, the doubler first converts the BCD-4221 data to BCD-5211 and then

left shifts the converted data. Thus, a multiplexor operation is in the critical path.

By integrating the multiplexor operation into the generation of the left-shifted four-

bit binary value and the left-shifted recoded BCD-4221 digit, a single set of shared

outputs can be produced with no intermediate steps. Thus, the recoding, shifting,

and multiplexing of the original approach [6] occurs concurrently, which significantly

reduces the delay. This modification yields a 63% reduction in the delay of the com-

bined binary/decimal doubler when optimizing for delay and a slight area advantage

when optimizing for area.

To further improve the delay of combined binary/decimal partial product reduc-

tion, we eliminated the use of binary 4:2 compressors, as these used two combined

binary/decimal doublers, which significantly slow down the binary datapath. Instead,

we used binary 3:2 counters and combined binary/decimal doublers exclusively. Fig-

ure 5.7 shows the improved combined binary/decimal partial product reduction tree

for the worst-case column containing 33 partial products. Across the partial product

reduction tree, using the improved combined binary/decimal doubler and replacing

the 4:2 compressors with 3:2 counters this improvement leads to a 29% reduction in

area and a 3% reduction in delay compared to the original approach [6].

A final improvement has as its aim the reduction of delay in the binary datapath.

By splitting the partial product reduction tree into a dedicated binary reduction

tree and a dedicated decimal reduction tree just before the first required instance of

a combined binary/decimal doubler, optimized data-specific doublers can be used.

For the binary data, doubling is achieved by hard-wired left-shifts. And for the

decimal data, doubling is achieved through simplified decimal-only doublers which do

not have a multiplexor function. Figure 5.8 shows the split binary/decimal partial

153

CSA

2
=
 4-bit binary
CSA
 (3:2)

x2

10
/2
=
 Binary/decimal
 doubler

(#)
=
 Respective weight of digit

Legend

Figure 5.7: Combined Bin/Dec Partial Product Reduction Tree (33 Products) [7]

154

product reduction tree for the worst-case column containing 33 partial products.

Across the partial product reduction tree, this improvement, in conjunction with the

improved combined binary/decimal doubler and replacement of 4:2 compressors with

3:2 counters in the decimal path, leads to a 19% reduction in area and a 42% reduction

in the delay of the binary path compared to the original approach [6]. The delay in

the decimal path is increased by 1%.

There is an optimization to the last improvement presented in [7] which may prove

useful for DFP multiplication. Namely, changing the supported operand width for

binary data from 63 bits to 53 bits, which means fewer binary partial products (27)

need be reduced. Therefore, a simpler partial product tree can be achieved which

yields a 29% reduction in area and a 48% reduction in the delay of the binary path

compared to the original approach [6]. The delay in the decimal path is increased

3%.

Implementation and Analysis

RTL models for the original combined BFXP/DFXP multiplier design by Vazquez

et al. along with the various improved designs were coded in Verilog and verified using

a suite of over 500,000 random testcases. The models were then synthesized using

the Synopsys Design Compiler into TSMC’s 65nm CMOS standard cells. Table 5.4

shows the cycle latency and area for the various fixed-point multiplier configurations

described in [7]. Cycle latency is shown as opposed to delay because all the designs

were pipelined for a cycle time of 500ps.

Summary

Several improvements over the combined BFXP/DFXP multiplier design in [6]

are presented in [7] and summarized here. These improvements include a reduction

155

CSA

2
=
 4-bit binary
CSA

x2

10
=
 Decimal
doubler

<<1
=
 Binary
doubler
 (shift left 1)

<<2
=
 Binary
quadrupler
 (shift left 2)

<<3
=
 Binary
octupler
 (shift left 3)

S

#

[
i
]
=
 Sum bit
i
 of weight #

(#)
=
 Respective weight of digit

Legend

Figure 5.8: Split Bin/Dec Partial Product Reduction Tree (33 Products) [7]

in the delay of the combined binary/decimal doubling circuit, a reduction in the

delay of the combined binary/decimal partial product reduction tree by removing all

instances of 4:2 compressors, and a reduction in the delay of the binary datapath of

156

Table 5.6: Area and Delay of Various Parallel DFXP Multipliers [7]

Latency Area

Multiplier Design Bin Dec µm2 Ratio

64-bit Radix-4 Binary 5 - 76,973 -

53-bit Radix-4 Binary 5 - 53,724 -

16-dig Radix-5 Decimal [6] - 8 99,911 -

64-bit/16-dig Baseline 5 8 176,884 1.00

53-bit/16-dig Baseline 5 8 153,635 1.00

Original 64-bit/16-digit [6] 8 8 135,184 0.76

Improved 64-bit/16-digit [7] 8 8 101,229 0.57

Split 64-bit/16-digit [7] 5 8 112,952 0.64

Split 53-bit/16-digit [7] 5 8 104,789 0.68

the partial product reduction tree by splitting the combined binary/decimal partial

product reduction tree into a dedicated binary reduction tree and a dedicated decimal

reduction tree just before the first required instance of a combined binary/decimal

doubler. Additionally, a promising design point to support combined BFP/DFP

multiplication is also presented.

157

5.2 Floating-point Design

The DFP multiplier described in this section is based on the parallel DFXP mul-

tiplier of [6] that utilizes the Radix-10 multiplier operand recoding scheme. It is

slightly different from [6] in that the final adder uses a high-speed direct decimal

carry-propagate adder [115] employing a Kogge-Stone carry network. This research,

presented in [8], is believed to be the first parallel DFP multiplier design in compliance

with IEEE 754-2008.

5.2.1 Algorithm

A flowchart-style drawing of the parallel DFP multiplication algorithm is shown

in Figure 5.9, with the steps of the parallel DFXP multiplier surrounded by a dashed

rectangle. As with the iterative DFP multiplier described in 4.2, the operation begins

with the reading and decoding of the operands (block “DPD Decode Operands”).

However, after the initial decoding is performed, the multiplicand is recoded from

BCD-8421 into BCD-4221 while the multiplier operand’s digits are Radix-10 recoded

into {−5, . . . , + 5}. The recoding of the p-digit multiplier operand into this digit

set is chosen as this approach yields only p + 1 partial products, as opposed to 2p

partial products with the alternative multiplier recoding schemes presented in [6].

With the multiplicand in BCD-4221 form, the double, triple, quadruple, and quin-

tuple are generated. The recoding of the multiplier and the generation of the mul-

tiplicand multiples are shown in the block labeled “Recode Multiplier and Generate

Multiples”. The recoded multiplier digits are used to select p + 1 partial products

from the multiple set {CA, 2CA, 3CA, 4CA, 5CA}4 and their complements. The partial

products are then presented in parallel to the partial product reduction tree (see the

4Note, CA is used instead of A as the discussion regards floating-point numbers. CA represents
the significand of the floating-point operand A.

158

Read Operands

DPD
 Decode Operands

DPD
 Encode Result

Write Result

Select Override Result or Multiply Result

Detect Any

Exceptions

Generate

IE
,
SLA
,

and

Product

Sign (
s

P

)

Determine

Leading

Zero

Counts

(
LZ

A

,
LZ

B

)

Round and Possibly Left

Shift One Digit, Output

Rounded IP (RIP)

Generate

Override

Result

Legend

Add to Produce

Intermediate Product (IP)

Left Shift, Output Shifted

IP (SIP), Generate Sticky

Bit (
sb
)

Accumulate Partial

Products in Parallel

Recode
 Multiplier

(-5, ..., +5) and Generate

Multiples (
2C

A

, ...,
5C

A

)

Generate Two Forms of

Truncated Product

(
TP

+0

,
TP

+1

)

Select Partial Products

IE
 =
 Intermdiate
 Exponent

SLA
 =
Shift Left Amount

DPD
 =
Densely Packed Decimal

Figure 5.9: Flowchart of Parallel DFP Multiplier Using Binary CSAs [8]

159

“Accumulate Partial Products...” block). For a p = 16 design, a binary CSA tree lay-

out for the worst-case of 17 decimal digits is shown on the left in Figure 5.4. The tree

is based on the structure presented in [6], but modified to add an additional 1CA par-

tial product when the multiplier operand’s MSD > 5. After all the partial products

are reduced into carry and sum vectors, a carry-propagate adder is used to produce a

non-redundant intermediate result equal in length to the sum of the operands’ digits.

This addition step appears in the block labeled “Add” in Figure 5.9.

In parallel with the multiplicand multiple generation and partial product reduc-

tion, the shift-left amount, SLA, and intermediate exponent of the intermediate prod-

uct, IEIP , are calculated for shifting the intermediate product, IP , to fit into p digits

of precision. These calculations are performed in the same manner described for the

iterative DFP multiplier (Section 4.2.2); namely, using the operands’ leading zero

counts in order to estimate the number of significant digits in the result. In addition

to the SLA and IEIP values, the sign bit of the final result is calculated, and ex-

ception conditions are detected. These steps occur in the “Determine Leading Zero

Counts” and “Generate IE, SLA, and Product Sign” blocks of Figure 5.9.

The IP emerging from the partial product accumulation tree is then left-shifted

by the SLA amount, forming the shifted intermediate product, SIP . Next, the sticky

bit is produced from the fractional product, FRP , which resides in the less significant

half of the 2p-digit shifted intermediate product register (block “Left Shift...”). In

parallel, the truncated product, TP , is incremented to allow the rounding logic to

select between TP+0 and TP+1, which, as described previously, is sufficient to support

all rounding modes (see Section 4.2.2). The production of TP+0 and TP+1 occurs in

the “Generate Two Forms...” block in Figure 5.9.

Finally, the rounding and exception logic, based on the rounding mode and ex-

ception conditions, selects between TP+0, TP+1, and special case values to produce

160

the rounded intermediate product, RIP . The RIP is then encoded in DPD and put

in IEEE 754-2008 format with the appropriate flags set to produce the final product,

FP . The exception handling and final product generation logic are distributed over

the “Detect Any Exceptions”, “Generate Override Result”, “Round and Possibly Left

Shift...”, and “Select Override Result or Multiply Result” blocks of Figure 5.9. In the

following subsections, the components and functions distinct from the iterative DFP

multiplier design of Section 4.2 are described.

5.2.2 Features

Figure 5.10 depicts the parallel DFP multiplier design. Note that as the register

transfer level (RTL) model for this design was written without storage elements to

take advantage of an auto-pipelining feature of the Synopsys Design Compiler, the

actual placement of storage elements throughout the dataflow may differ slightly from

those shown in the figure. More information on the RTL model and auto-pipelining

appears in Section 5.2.3.

To support DFP, the intermediate product, IP , emerging from the carry-propagate

adder in non-redundant form, enters a left shifter to produce the shifted intermedi-

ate product, SIP . For a p = 16 digit design, this shifter is 32 digits wide. In the

iterative DFP design, when the intermediate exponent of the intermediate product

is less than Emin, the control logic allows the iterative portion of the algorithm to

continue, right-shifting IP in an effort to bring the IEIP into range. Thus, gradual

underflow is supported in hardware with no change to the dataflow circuitry. In the

parallel DFP design, however, supporting gradual underflow requires a modification

to the dataflow in the form of expanding the function of the left shifter to both a left

and right shifter.

161

Carry-propagate Adder

Multiplicand Register (
 L1L2
)

Multiplicand Register (
 L1L2
)
Multiplicand Register

C

A

Location of decimal point

Legend

Multiplicand Register (
 L1L2
)
Multiplier Register

C

B

Multiplicand Multiple Select Generation
Multiplicand Multiple Generation

Multiplicand Register (
 L1L2
)
5 Multiplicand Multiple Registers

1C

A

2C

A

3C

A

4C

A

5C

A

5:1 Multiplexor

Complement /
 XOR
 bank

1C

A

2C

A

3C

A

4C

A

5C

A

TP

+1

,
g
,
r
,
sb
 Register

"{-
5C

A

,...,+
5C

A

}"

Partial Product Accumulation /
 CSA
 Tree

(requires multiple cycles)

17 partial products of up to 19 digits

 (including sign handling digit)

Carry-propagate Adder

Intermediate Product Register

Carry-propagate Adder
Shifted Intermediate Product Register

Sticky Bit OR Tree
Truncated Product
 Incrementer

Multiplicand Register (
 L1L2
)
TP

+0

 Register

Left Shifter

2:1 Multiplexor (select
 TP

+0

,
TP

+1

)

Multiplicand Register (
 L1L2
)
Rounded Intermediate Product Register

SLA

RIP

IP

SIP

FRP
TP

sb

g
,
r

C

A

, C

B

, C

P

=
Significand
 of A, B, product

IP
 =
 Intermediate Product

SLA
 =
Shift Left Amount

SIP
=
Shifted IP

TP

+0

,
TP

+1

=
Truncated Product +0, +1

FRP
=
Fractional Product

RIP
=
Rounded IP

g
,
r
 =
ground, round digits

sb
=
sticky bit

Figure 5.10: Parallel DFP Multiplier Design [8]

The shifter is controlled by the shift left amount, SLA (see Equation 4.26). The

more significant half of the SIP , called the truncated product or TP , is incremented

162

via a 16 digit decimal incrementer while the less significant half of the SIP , called

the fractional product or FRP , is used to produce the sticky bit, sb, via a 56 bit

OR tree5. Using the rounding scheme presented in Section 4.2.2, the rounding logic

produces the rounded intermediate product, RIP , by selecting between the non-

incremented truncated product, TP+0, and its incremented value, TP+1, and possibly

concatenating the guard digit from the FRP or its incremented value.

The parallel ORing of the p− 2 digits FRP is in contrast with the iterative DFP

multiplier design which developed the sticky bit on-the-fly. Thus, in the parallel DFP

multiplier, the sticky counter, SC, is not needed. A method to pre-calculate the

sticky bit in parallel with the fixed-point multiplier was considered. However, this

method did not reduce the worst-case delay, and it increased the area.

Performing the shift operation before the carry-propagate adder (CPA) in the

fixed-point multiplier was examined but was not implemented due to the following

tradeoffs. The primary benefits of using a smaller p-digit CPA after the shifter and

the potential to combine the final addition and rounding are outweighed by several

negative factors. First, the calculation of the sticky bit from a redundant carry-

save representation requires roughly twice as many gates to perform the calculation,

increasing the area of the rounding logic. Second, a separate carry tree is required

to calculate any possible carry out of the redundant representation of the FRP along

with more complicated rounding logic to handle this possible carry into the round

digit during result selection. It also requires the generation of TP+2, in addition to

TP+1 and TP+0, to handle the case of both a round-up and carry into the round

digit. Third, shifting prior to adding requires two 2p-digit shifters, instead of one,

as the intermediate product has sum and carry vectors comprised of four-bit digits.

Since the fixed-point multiplication dominates the latency of the DFP multiplication,

5The OR tree is not 64 bits as the two leading digits are the guard and round digits.

163

the small delay benefit of performing the shift earlier is considered to be outweighed

by the additional area overhead of the 2p-digit shifter and larger sticky calculation

logic. For these reasons, the shifter was placed after the CPA as shown in Figure 5.10.

Other than not supporting gradual underflow, the exception detection and han-

dling is the same in the parallel DFP design as it is in the iterative DFP design. In the

parallel DFP design, the detection of IEIP < Emin simply leads to the raising of an

output flag to inform the system that some other mechanism is needed to calculate the

subnormal result. The motivation behind this decision is the considerable savings in

area and delay obtained by removing this feature from the hardware implementation.

In the iterative DFP multiplier, it is straightforward to realize the necessary right

shifting of the intermediate product. However, in the parallel DFP multiplier, right-

shifting the intermediate product requires the replacement of the left shifter with a

right-left shifter. In support of this, a shift right amount, SRA, is needed to con-

trol the shifter and to increase the intermediate exponent of the shifted intermediate

product, IESIP . The equations for SRA and IESIP follow, where IEIP < Emin.

SRA = min((Emin− IEIP), p + 2)

IESIP = IEIP + SRA

Completion of the multiply operation involves the same steps as in the iterative

DFP multiplier, namely, selecting between RIP and a special value, such as QNaN

or infinity, and producing the final result in DPD encoded form. A QNaN result is

warranted when the multiply operation is 0× inf or if one or both operands is NaN.

If an operand is NaN, that operand’s NaN payload is used when forming the result.

Instead of supporting alternative paths through the dataflow, the control logic passes

the NaN value through the dataflow by multiplying it by 1 (i.e., coercing the other

164

operand). The rounding logic ensures the passed value does not get incremented or

shifted.

5.2.3 Implementation and Analysis

Register transfer level models of both the presented 64-bit (16-digit) parallel DFP

multiplier [8] and its predecessor parallel DFXP multiplier [6] were coded in Verilog.

Both designs were synthesized using LSI Logic’s gflxp 0.11um CMOS standard cell li-

brary and the Synopsys Design Compiler. To validate the correctness of the designs,

over 500, 000 testcases were simulated successfully on the DFXP model (pre- and

post-synthesis versions) and over 500, 000 testcases covering all rounding modes and

exceptions were simulated successfully on the DFP model (pre- and post-synthesis

versions). Publicly available tests include directed-random testcases from IBM’s FP-

gen tool [140] and directed tests at [141]. Table 5.7 contains area and delay estimates

for the DFP multiplier design presented and its predecessor DFXP multiplier design.

The values in the FO4 Delay column are based on the delay of an inverter driving

four same-size inverters being 55ps, in the aforementioned technology. The critical

path in the parallel DFP multiplier [8] is in the stage with the 128-bit shifter, while

for the parallel DFXP multiplier it is within the partial product reduction tree.

The entries in Table 5.7 for the parallel DFP multiplier were chosen from one

of multiple synthesis jobs using Synopsys Design Compiler’s auto-pipelining feature.

This feature provides area and delay results for design implementations of various

pipeline depths. With this information, one can more readily examine the costs

associated with a desired design point. Table 5.8 shows the area and delay information

for various pipeline depths as computed from multiples synthesis runs using this auto-

pipelining feature. One slight drawback of auto-pipelining is that there are no latches

165

Table 5.7: Area and Delay of Parallel Multipliers (DFXP vs. DFP)

Parallel (Binary CSAs)

p = 16 DFXP [6] DFP [8]

Latency (cycles) 8 12

Throughput (ops/cycle) 1 1

Cell count 182,791 433,957

Area (um2) 369,238 876,593

Delay (ps) 840 820

Delay (FO4) 15.3 14.9

Table 5.8: Area and Delay vs. Pipeline Depth of Parallel DFP Multiplier

p = 16 Delay Area

Pipeline Depth ps FO4 Cells µm2

0 (combinational) 4600 83.64 323,488 653,445

1 (latched outputs) 4470 81.27 350,042 707,084

2 2470 44.91 357,807 722,770

3 1880 34.18 381,630 770,892

4 1560 28.36 359,544 726,278

5 1310 23.82 371,620 750,672

6 1180 21.45 392,807 793,470

7 1090 19.82 405,797 819,790

8 1050 19.09 389,687 787,167

9 940 17.09 401,609 811,250

10 890 16.18 412,725 833,704

11 870 15.82 436,114 880,950

12 820 14.91 433,957 876,593

on the inputs. Thus, the area numbers are slightly optimistic when compared to the

iterative DFP multiplier’s numbers.

166

5.2.4 Summary

The parallel DFP multiplier presented in this subsection combines the DFP exten-

sions developed for the iterative DFXP multiplier design of [39] to a slightly altered

parallel DFXP multiplier design of [6]. The resultant parallel DFP multiplier is com-

pliant with IEEE 754-2008. In the next section, this parallel DFP multiplier [8] is

compared with an iterative DFP multiplier [41].

167

Table 5.9: Area and Delay of Multipliers (Iterative vs. Parallel, DFXP vs. DFP)

Iterative (Decimal CSAs) Parallel (Binary CSAs)

p = 16 DFXP [39] DFP [41] DFXP [6] DFP [8]

Latency (cycles) 20 25 8 12

Throughput (ops/cycle) 1/17 1/21 1 1

Cell count 59,234 117,627 182,791 433,957

Area (um2) 119,653 237,607 369,238 876,593

Delay (ps) 810 850 840 820

Delay (FO4) 14.7 15.4 15.3 14.9

5.3 Analysis of Iterative and Parallel Designs

Having presented multiple DFXP and DFP hardware multipliers, this section

aims to compare the iterative DFXP design of Section 4.1.1, the iterative DFP design

of Section 4.2, the parallel DFXP design of Section 5.1.2, and the parallel DFP

design of Section 5.2. As mentioned in each multiplier’s respective section, register

transfer level models were coded in Verilog for all four 64-bit (16-digit) iterative

and parallel DFP multipliers [8, 41], and their predecessor DFXP multipliers [6, 39].

To make the comparison between the iterative and parallel designs as balanced as

possible, the iterative design was converted so as not to support gradual underflow.

This alteration has no effect on the critical path and virtually no change in area.

The designs were synthesized using LSI Logic’s gflxp 0.11um CMOS standard cell

library and Synopsys Design Compiler Y-2006.06–SP1. To validate the correctness of

the design, over 500,000 testcases covering all rounding modes and exceptions were

simulated successfully on the designs, both pre- and post-synthesis. Publicly available

tests used for validation include directed pseudo-random testcases from IBM’s FPgen

tool [143] and directed tests available at [141].

Table 5.9 contains area and delay estimates for the DFP multiplier designs and

168

their predecessor DFXP multiplier designs. The values in the FO4 Delay column are

based on the delay of an inverter driving four same-size inverters having a 55ps delay,

in the aforementioned technology. The parallel DFXP and DFP multipliers have

eight and twelve pipeline stages, respectively, to achieve critical path delays that are

comparable to the iterative multiplier designs. The critical path in the iterative DFP

multiplier is in the stage with the 128-bit barrel shifter, while for the iterative DFXP

multiplier it is the decimal 4:2 compressor. As for the parallel DFP multiplier, the

critical path is the 128-bit shifter, while for the fixed-point portion it is within the

partial product reduction tree. The critical paths identified in the parallel multipliers

are with respect to the implementations shown in Table 5.8.

According to Table 5.9, the amount of logic necessary to extend the parallel DFXP

multiplier to support DFP is significantly more than the amount necessary to extend

the iterative DFXP multiplier to support DFP. Though one might expect the deltas

in area to be relatively similar, there are several reasons why they are quite different.

First, as the throughput of the parallel multiplier is one, there is a significant amount

of information which needs to be moved from pipe stage to pipe stage. Information

such as the shift amount, intermediate exponent, exponent-related data (for exception

detection and handling), rounding mode, and the sticky and sign bit. Second, there is

logic which exists in the parallel DFP multiplier which does not exist in the iterative

DFP multiplier. Namely, the carry-propagate adder is twice as wide in the parallel

design, the shifter is a circular shifter as opposed to a left shifter, a shift right amount

must be developed to support gradual underflow, and there is an OR tree to generate

the sticky bit. Third, there may be some inefficiency in the auto-pipelining feature of

the synthesis tool, which was only applied to the parallel multiplier.

As can be seen in Table 5.9, the iterative DFP multiplier is significantly smaller.

Further, the iterative DFP multiplier may achieve a higher practical implementa-

169

tion frequency as the latch overhead may be prohibitive when the partial product

reduction tree of the parallel DFP multiplier is deeply pipelined. Thus, in situations

when area is constrained or when cycle time is extremely aggressive, the iterative

DFP multiplier may be an attractive implementation. However, the parallel DFP

multiplier has less latency for a single multiply operation and is able to produce a

new result every cycle. Therefore, in situations when area can be traded for latency

and throughput, the parallel DFP multiplier may be an attractive implementation.

As for power considerations, the fewer overall devices in the iterative multiplier, and

more importantly the fewer storage elements, will result in less leakage in standby

mode. This benefit is mitigated in operational mode as the higher latency and lower

throughput may result in more power consumed for a given workload. A more thor-

ough examination of the iterative and parallel DFP multiplier designs is presented

in [42].

170

Chapter 6

Conclusion

This chapter presents a summary of my research performed in collaboration with

others, my thoughts on related future research, and closing remarks.

171

6.1 Summary

Of my research contained in this dissertation, I start with a description of an

iterative DFXP multiplier design. The algorithm and implementation of this design

establish several notable decimal-specific features, such as decimal carry-save addi-

tion, and serve as a baseline for comparing area and performance of future multiplier

designs. Then, I present a second iterative DFXP multiplier, which in contrast to

the aforementioned design, develops the partial products on-the-fly. The algorithm

and implementation of this design illustrate the benefit of operand recoding to reduce

the number of multiplicand multiples. From this point, my research focuses on DFP

multiplication.

I then present my research on adapting the iterative DFXP multiplier design

based on decimal carry-save addition to support DFP multiplication as defined in

IEEE 754-2008. The control portion of this design, which is used in subsequent

research efforts, is derived and described. Further, a comparison is made between

this iterative DFP multiplier and its predecessor fixed-point design with respect to

area, delay, and latency.

The research of two teams into parallel DFXP multiplication are described for a

thorough examination of the topic of decimal multiplication, and because I extend

one of these designs to support DFP multiplication. I compare the area, delay, la-

tency, and throughput of these two parallel DFXP multiplier designs and my earlier

iterative DFXP multipliers. My research is then presented on extending the parallel

DFXP multiplier based on binary carry-save addition to support DFP multiplication

as defined in IEEE 754-2008. Finally, I compare the iterative and parallel DFXP

multipliers and the iterative and parallel DFP multipliers with respect to area, delay,

latency, and throughput. I offer several design considerations and trade-offs to be

172

weighed by those seeking to implement hardware support for decimal multiplication.

The iterative DFXP multiplier designs consume significantly less area than their

parallel counterparts. Further, the iterative designs can achieve a higher practical

operating frequency. This is because the introduction of additional pipeline stages

into the parallel multiplier designs, particularly into the partial product accumula-

tion tree, is much more costly in terms of latch count, and therefore, area. Thus,

the iterative multipliers may be better suited for implementations in which area is

deemed more important than throughput. However, because a mechanism has been

developed to overload binary carry-save adders to support decimal addition, com-

bined binary/decimal parallel multipliers can be implemented to mitigate the area

overhead of a parallel design. Using a combined binary/decimal multiplier is most

suitable for workloads which are not expected to compete for use of the binary and

decimal multiplier resource. The same may be said for a combined binary/decimal

adder.

The iterative DFXP multiplier designs consume significantly less wiring resource

than their parallel counterparts. Thus, the iterative multipliers may be better suited

for technologies which offer limited wiring layers or in which wiring is particularly

expensive in terms of area and/or delay. As only one partial product in the iterative

designs is produced at a time, the same wiring tracks can be used to send each partial

product to the adder for accumulation. This is in contrast to the current parallel

decimal multiplier designs which produce multiple partial products in parallel, along

with negative partial products, and then distribute these vectors to multiple locations

in the partial product accumulation tree. Some ideas to address this problem are

discussed in Section 6.2.

As defined in IEEE 754-2008, the features and requirements of DFP arithmetic are

similar to BFP arithmetic. At the implementation level, however, the following facts

173

are significant: 1) DFP operands and results are not normalized, and 2) decimal digit

boundaries are every four or more bits, depending on the encoding, and not every bit.

I explored the effect of these differences in developing both iterative and parallel DFP

multiplier designs. It is clear that hardware unique to decimal is needed for exception

detection and handling, as well as for rounding. Further, and fortunately, because of

the large amount of similarity between DFP logic and BFP logic, a significant amount

of hardware could be shared in a combined BFP/DFP execution unit.

174

6.2 Future Research

With the IEEE 754-2008 [20] now a standard and the recent announcements of

DFP hardware support in IBM’s server [23] and mainframe [25] microprocessors,

it is anticipated other microprocessor manufacturers will consider DFP hardware

implementations. Thus, there are several areas in which further research will be

beneficial to those making the decision to add DFP hardware and to those deciding

whether DFP hardware should continue to be offered or how those offerings should

be modified.

For those considering DFP hardware implementations, the marketplace may very

well provide the answer. If a sizable number of customers purchase systems with

hardware support for DFP operations specifically to modify, compile, and run their

applications, or if independent software vendors begin developing applications to take

advantage of the DFP hardware, the manufacturers wishing to distinguish their pro-

cessor may want to add DFP hardware instructions. Now that two platforms offer

DFP hardware instructions, benchmarks and applications can be modified to take

advantage of these instructions in order to examine the actual speedup. For those

already offering hardware implementations, this scenario of more applications and

improved benchmarks enables them to profile the performance of these applications

to determine which operations should be added or have their latency reduced to speed

up the program’s operation.

This suggests additional research in the area of benchmark development and po-

tential speedup may be needed. In commercial computing, where the need for DFP

hardware is less contested or die space may be more readily available, further re-

search is needed to determine which decimal operations yield the greatest speedup –

specifically, which functions should have dedicated hardware, which functions should

175

be implemented in microcode or be hardware-assisted, and which functions should

remain in software. Also, the distribution of data and results may be different from

those of BFP workloads. Thus, as applications become more prevalent and bench-

marks mature, the frequency of subnormals, NaNs, and exceptions need to be studied

to determine whether these should be handled in hardware, microcode, or software.

From an architectural point of view, there are numerous research opportunities

as well, such as implementing fused multiply-add, tagging the register file data, and

combining DFP and BFP hardware into a single execution unit. Some BFP units

support fused, multiply-add (Y = (A×C)+B), as some program profiles indicate the

result of a multiply operation is then often used in an addition operation. The need

and benefit of this operation needs to be explored as the number and type of decimal

applications increase. Tagging the register file data with information about its data

may improve the latency of some operations and subsequently, program throughput.

As an example of how tagging may be worthwhile, consider the cost associated with

aligning operands for addition due to determining the difference between the expo-

nents and the number of leading zeros in the larger operand. If the number of leading

zeros in each operand were available at the time the operands are read from the reg-

ister file, the addition operation could complete sooner. The determination of the

number of leading zeros can be performed when the data are fetched from memory

and/or when each result is produced. In addition to the leading zero count, additional

information could be placed in each operand’s tag field (e.g., zero, NaN, subnormal,

infinity). This is similar to what is done in many BFP units.

As a combined binary/decimal multiplier design now exists and many combined

binary/decimal adder designs have been developed, research to develop a combined

BFP/DFP unit is appropriate at this point. A significant percentage of the area

in a BFP unit is used to realize the parallel accumulation of partial products in

176

the multiply operation and to realize operand alignment and addition in the addi-

tion/subtraction operations. Thus, it may very well be possible for BFP instructions

to have similar latencies and throughput in a combined BFP/DFP unit as they do

in a dedicated unit and with significantly less area than if implemented separately.

Research along these lines into extending the major dataflow components in a BFP

design to support the various DFP operations would be beneficial.

There are also a number of worthwhile research pursuits specific to decimal mul-

tiplication. One idea is to apply the use of binary carry-save adders to the iterative

DFXP multiplier. Another idea is to extend the combined BFXP/DFXP multiplier

(using binary CSAs in the partial product accumulation tree) to support the floating-

point requirements of IEEE 754-2008 for both radices. Also, as mentioned in the last

section, current parallel multiplier designs require significant wiring resource to dis-

tribute the partial products to the partial product accumulation tree. To reduce the

number of wiring tracks, research is needed to examine ways to generate the partial

products locally, while still using a parallel reduction technique. Further, applying the

research on parallel DFP multiplication to division and square root, perhaps utilizing

Goldschmidt’s concepts, may prove interesting.

We are nearing 50 years of modern computing with binary arithmetic, and there

are still a large number of publications, patents, and presentations emerging from re-

search in this field. I believe we have only recently begun to satisfy the current needs

and arouse the interests of both commercial and personal users in decimal computer

arithmetic. And this need/interest will only increase as the following cycle gains mo-

mentum: application developers write more programs calling for DFP instructions →
researchers improve DFP hardware solutions → more platforms offer improved DFP

support → application developers write more programs calling for DFP instructions.

Only the market will decide, but as continued research narrows the performance gap

177

between BFP and DFP arithmetic, we may very well see DFP applications displacing

BFP applications in certain computing markets.

178

6.3 Closing

My contribution to advancing the body of knowledge includes two iterative DFXP

multiplication algorithms and hardware designs, the adaptation of one of these de-

signs to support DFP, and the extension of another research team’s parallel DFXP

multiplier design to support DFP. Both designs which support DFP multiplication are

in compliance with IEEE 754-2008. This dissertation serves as a useful resource for

those seeking to implement area-efficient implementations of DFXP and DFP multi-

plication, to extend a given DFXP multiplication design or other decimal operations

to support DFP, and to pursue additional research in the area of DFXP and DFP

multiplication.

179

Bibliography

[1] M. F. Cowlishaw, “Decimal Arithmetic FAQ.” World Wide Web.

http://speleotrove.com/decimal/decifaq1.html.

[2] I. C. Society, “Computing History Timeline.” World Wide Web.

http://www.computer.org/portal/cms docs computer/computer/timeline/-

timeline.pdf.

[3] M. F. Cowlishaw, “Densely Packed Decimal Encoding,” IEE Proceedings –

Computers and Digital Techniques, vol. 149, pp. 102–104, May 2002.

[4] A. Svoboda, “Decimal Adder with Signed Digit Arithmetic,” IEEE Transaction

on Computers, vol. C, pp. 212–215, March 1969.

[5] T. Lang and A. Nannarelli, “A Radix-10 Combinational Multiplier,” in Asilo-

mar Conference on Signals, Systems, and Computers, pp. 313–317, Oct.–Nov.

2006.

[6] A. Vazquez, E. Antelo, and P. Montuschi, “A New Family of High–Performance

Parallel Decimal Multipliers,” in 18th IEEE Symposium on Computer Arith-

metic, pp. 195–204, IEEE Computer Society, June 2007.

[7] B. J. Hickmann, M. A. Erle, and M. J. Schulte, “Improved Combined Bi-

nary/Decimal Fixed-Point Multipliers,” IEEE, October 2008.

180

[8] B. J. Hickmann, A. Krioukov, M. A. Erle, and M. J. Schulte, “A Parallel IEEE

P754 Decimal Floating-Point Multiplier,” in 25th International Conference on

Computer Design, pp. 296–303, IEEE, IEEE Computer Society, October 2007.

[9] Free Software Foundation, “GNU C Compiler (GCC) 4.3 Release.” World Wide

Web. http://gcc.gnu.org/gcc-4.3.

[10] JTC 1/SC 22/WG 4, ISO/IEC 1989: Information technology – Programming

languages – COBOL. New York: American National Standards Institute,

first ed., December 2002. 859 pages.

[11] P. Crismer, “Eiffel Decimal Arithmetic Library.” World Wide Web.

http://eiffelzone.com/esd/eda/index.html, version 1.08.

[12] Sun Microsystems, “BigDecimal Java Class.” World Wide Web.

http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html.

[13] D. Currie, “Lua decNumber Library.” World Wide Web. http://luaforge.net/-

projects/ldecnumber/, version 21.

[14] A. Gough (Maintainer), “PERL BigNum Library.” World Wide Web.

http://dev.perl.org/perl6/pdd/pdd14 bignum.html, version 1.5.

[15] F. Batista, “Decimal Data Type.” World Wide Web.

http://www.python.org/dev/peps/pep-0327, version 62268.

[16] TC X3J18, ANSI X3.274-1996: American National Standard for Information

Technology - Programming Language REXX. New York: American National

Standards Institute, February 1996. 167 pages.

[17] S. Kobayashi, “Ruby BigDecimal Class.” World Wide Web. http://www.ruby-

doc.org/stdlib/libdoc/bigdecimal/rdoc, version 16-April-2007.

181

[18] Floating-Point Working Group, ANSI/IEEE Std 754-1985: IEEE Standard for

Binary Floating-Point Arithmetic. New York: The Institute of Electrical and

Electronics Engineers, August 1985. 17 pages.

[19] Floating-Point Working Group, ANSI/IEEE Std 854-1987: IEEE Standard for

Radix-Independent Floating-Point Arithmetic. New York: The Institute of Elec-

trical and Electronics Engineers, October 1987. 16 pages.

[20] IEEE Working Group of the Microprocessor Standards Subcommittee, IEEE

Standard for Floating-Point Arithmetic. New York: The Institute of Electrical

and Electronics Engineers, 2008.

[21] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Elec-

tronics, vol. 38, pp. 114–117, April 1965.

[22] M. Cornea, C. Anderson, and C. Tsen, “Software Implementation of the IEEE

754R Decimal Floating-Point Arithmetic,” in First International Conference

on Software and Data Technologies, (Setúbal, Portugal), pp. 12–20, INSTICC

Press, September 2006.

[23] L. Eisen, J. W. W. III, H.-W. Tast, N. Mding, J. Leenstra, S. M. Mueller,

C. Jacobi, J. Preiss, E. M. Schwarz, and S. R. Carlough, “IBM POWER6

Accelerators: VMX and DFU,” IBM Journal of Research and Development,

vol. 51, pp. 663–684, November 2007.

[24] A. Y. Duale, M. H. Decker, H.-G. Zipperer, M. Aharoni, and T. J. Bohizic,

“Decimal Floating-Point in Z9: An Implementation and Testing Perspective,”

IBM Journal of Research and Development, vol. 51, pp. 217–228, January 2007.

182

[25] E. M. Schwarz, J. S. Kapernick, and M. F. Cowlishaw, “Decimal Floating-

Point Support on the IBM System z10 Processor,” IBM Journal of Research

and Development, vol. 53, no. 1/2, 2009.

[26] M. A. Erle, M. J. Schulte, and J. M. Linebarger, “Potential Speedup Using

Decimal Floating-Point Hardware,” in Asilomar Conference on Signals, Sys-

tems and Computers, vol. 2, pp. 1073–1077, November 2002.

[27] M. J. Schulte, N. Lindberg, and A. Laxminarain, “Performance Evaluation

of Decimal Floating-Point Arithmetic,” in Proceedings of the 6th IBM Austin

Center for Advanced Studies Conference, (Austin, TX), February 2005.

[28] L.-K. Wang, C. Tsen, M. J. Schulte, and D. Jhalani, “Benchmarks and Perfor-

mance Analysis for Decimal Floating-Point Applications,” in 25th International

Conference on Computer Design, pp. 164–170, IEEE, October 2007.

[29] K. Quinn, “Ever Had Problems Rounding Off Figures? This Stock Exhange

Has,” Wall Street Journal, November 8 1983.

[30] M. Blair, S. Obenski, and P. Bridickas, “Patriot Missile Defense: Software

Problem Led to System Failure at Dhahran, Saudi Arabia,” Tech. Rep.

GAO/IMTEC-92-26, United States General Accounting Office, Washington,

D.C. 20548, February 1992.

[31] A. Tsang and M. Olschanowsky, “A Study of Database 2 Customer Queries,”

IBM Technical Report 03.413, IBM, San Jose, CA, April 1991.

[32] Intel, “Intel Decimal Floating-Point Math Library.” World Wide Web.

http://softwarecommunity.intel.com/articles/eng/3687.htm, version 1.0.

183

[33] M. F. Cowlishaw, “IBM decNumber Library.” World Wide Web.

http://www.alphaworks.ibm.com/tech/decnumber, version 3.56.

[34] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz, and S. R. Carlough,

“The IBM z900 Decimal Arithmetic Unit,” in Asilomar Conference on Signals,

Systems, and Computers, vol. 2, pp. 1335–1339, November 2001.

[35] L.-K. Wang and M. J. Schulte, “Decimal Floating-Point Division Using Newton-

Raphson Iteration,” in 15th IEEE International Conference on Application-

Specific Systems, Architectures, and Processors, pp. 84–95, IEEE Computer

Society Press, September 2004.

[36] M. Mittal, A. Peleg, and U. Weiser, “MMX Technology Architecture Overview,”

Intel Technology Journal, vol. Q3, pp. 1–12, 1997.

[37] M. Cornea and J. Crawford, “IEEE 754R Decimal Floating-Point Arith-

metic: Reliable and Efficient Implementation on Intel c© Architecture

Platforms.” World Wide Web, Intel Technology Journal, February 2007.

http://www.intel.com/technology/itj/2007/v11i1/s2-decimal/1-sidebar.htm.

[38] M. Bhat, J. Crawford, R. Morin, and K. Shiv, “Performance Characterization

of Decimal Arithmetic in Commercial Java Workloads,” in IEEE International

Symposium on Performance Analysis of Systems and Software, pp. 54–61, April

2007.

[39] M. A. Erle and M. J. Schulte, “Decimal Multiplication Via Carry-Save Addi-

tion,” in 14th IEEE International Conference on Application-Specific Systems,

Architectures, and Processors, pp. 348–358, June 2003.

184

[40] M. A. Erle, E. M. Schwarz, and M. J. Schulte, “Decimal Multiplication with

Efficient Partial Product Generation,” in 17th IEEE Symposium on Computer

Arithmetic, pp. 21–28, IEEE Computer Society, June 2005.

[41] M. A. Erle, M. J. Schulte, and B. J. Hickmann, “Decimal Floating-Point Mul-

tiplication Via Carry-Save Addition,” in 18th IEEE Symposium on Computer

Arithmetic, pp. 46–55, IEEE Computer Society, June 2007.

[42] M. A. Erle, B. J. Hickmann, and M. J. Schulte, “Decimal Floating-Point Multi-

plication,” accepted for publication in IEEE Transactions on Computers, 2008.

[43] L.-K. Wang and M. J. Schulte, “Decimal Floating-Point Square Root Us-

ing Newton-Raphson Iteration,” in 16th IEEE International Conference on

Application-Specific Systems, Architectures, and Processors, pp. 309–315, July

2005.

[44] G. Ifrah, A Universal History of Computing: From Prehistory to Computers.

New York, NY: John Wiley and Sons, Inc., 2000.

[45] F. Bacon, The Advancement of Learning, Book 6, Chapter 1. 1605.

[46] G. Boole, An Investigation of the Laws of Thought, on Which are Founded

the Mathematical Theories of Logic and Probabilities. London: Walton and

Maberley, 1854.

[47] C. E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Trans-

actions American Institute of Electrical Engineers, vol. 57, pp. 713–723, March

1938. Included in Part B.

185

[48] H. H. Goldstine and A. Goldstine, “The Electronic Numerical Integrator and

Computer (ENIAC),” IEEE Annals of the History of Computing, vol. 18, no. 1,

pp. 10–16, 1996.

[49] R. Head, “Univac: a Philadelphia Story,” IEEE Annals of the History of Com-

puting, vol. 23, no. 3, pp. 60–63, 2001.

[50] D. E. Knuth, “The IBM 650: An Appreciation from the Field,” IEEE Annals

of the History of Computing, vol. 8, no. 1, pp. 50–55, 1986.

[51] N. Stern, From ENIAC to UNIVAC – An Appraisal of the Eckert-Mauchly

Computers. Bedford, MA: Digital Press, 1981.

[52] M. V. Wilkes, “Arithmetic on the EDSAC,” IEEE Annals of the History of

Computing, vol. 19, no. 1, pp. 13–15, 1997.

[53] M. R. Williams, “The Origins, Uses, and Fate of the EDVAC,” IEEE Annals

of the History of Computing, vol. 15, no. 1, pp. 22–38, 1993.

[54] T. Leser and M. Romanelli, “Programming and Coding for ORDVAC.” World

Wide Web, October 1956. http://www.bitsavers.org/pdf/ordvac/-

ORDVAC programming Oct56.pdf.

[55] G. Gray, “Unisys History Newsletter (Volume 1, Number 2).” World Wide Web,

December 1992. http://www.cc.gatech.edu/gvu/people/randy.carpenter/-

folklore/v1n2.html.

[56] B. Randell, “From Analytical Engine to Electronic Digital Computer: The

Contributions of Ludgate, Torres, and Bush,” IEEE Annals of the History of

Computing, vol. 4, no. 4, pp. 327–341, 1982.

186

[57] NationMaster Encyclopedia, “Z1 (Computer).” World Wide Web.

http://www.nationmaster.com/encyclopedia/Z1-(computer).

[58] J. V. Atanasoff, “Advent of Electronic Digital Computing,” IEEE Annals of

the History of Computing, vol. 6, no. 3, pp. 229–282, 1984.

[59] J. Copeland, “Colossus: Its Origins and Originators,” IEEE Annals of the His-

tory of Computing, vol. 26, no. 4, pp. 38–45, 2004.

[60] R. Campbell, Makin’ Numbers: Howard Aiken and the Computer, ch. “Aiken’s

First Machine: the IBM ASCC/Harvard Mark I”, pp. 31–63. Cambridge, MA:

MIT Press, 1999.

[61] ScienCentral, Inc. and The American Institute of Physics, “Miracle

Month - The Invention of the First Transistor.” World Wide Web, 1999.

http://www.pbs.org/transistor/background1/events/miraclemo.html.

[62] W. Shockley, M. Sparks, and G. K. Teal, “p-n Junction Transistors,” Physical

Review, vol. 83, pp. 151–162, July 1951.

[63] ScienCentral, Inc. and The American Institute of Physics,

“The First Silicon Transistor.” World Wide Web, 1999.

http://www.pbs.org/transistor/science/events/silicont1.html.

[64] Texas Instruments, “The Chip that Jack Built.” World Wide Web, 1995.

http://www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml.

[65] I. P. S. of Japan, “Historic Computers in Japan: [NEC] NEAC 2201.” World

Wide Web. http://museum.ipsj.or.jp/en/computer/dawn/0018.html.

187

[66] C. Cole, “The Remington Rand Univac LARC.” World Wide Web.

http://www.computer-history.info/Page4.dir/pages/-

LARC.dir/LARC.Cole.html.

[67] W. B. et al., Planning a Computer System: Project Stretch. New York:

McGraw-Hill Book Company, 1962. http://ed-thelen.org/comp-hist/IBM-7030-

Planning-McJones.pdf.

[68] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, “Architecture of the IBM

System/360,” IBM Journal of Research and Development, vol. 8, pp. 87–101,

April 1964.

[69] J. E. Thornton, “The CDC 6600 Project,” IEEE Annals of the History of Com-

puting, vol. 2, no. 4, pp. 338–348, 1980.

[70] ISO/IEC JTC 1/SC 22/WG 9, ISO/IEC 8652:1995: Ada Reference Manual:

Language and Standard Libraries. Switzerland: International Organization for

Standardization, June 2001. 560 pages.

[71] JTC 1 (ECMA TC 39/TG 2), ISO/IEC 23270: Information Technology – C#

Language Specification. Switzerland: International Organization for Standard-

ization, first ed., April 2003. 471 pages.

[72] Microsoft, “Visual Basic.” World Wide Web. http://msdn.microsoft.com/en-

us/vbasic/default.aspx, version 9.0.

[73] TC X3J1, ANSI X3.53-1976: American National Standard Programming Lan-

guage PL/I. New York: American National Standards Institute, February 1976.

403 pages.

188

[74] ISO/IEC JTC 1/SC 32, ISO/IEC 9075:1992: Information Technology –

Database Languages – SQL. Switzerland: International Organization for Stan-

dardization (ISO), March 1992. 626 pages.

[75] A. M. P. V. Biron, “XML Schema Part 2: Datatypes Second Edition.” World

Wide Web, October 2004. http://www.w3.org/TR/2004/REC-xmlschema-2-

20041028.

[76] M. F. Cowlishaw, “General Decimal Arithmetic Specification.”

http://speleotrove.com/decimal/decarith.html, July 2008. Draft 1.68.

[77] Intel, “Reference Software Implementation of the IEEE 754R Dec-

imal Floating-Point Arithmetic.” World Wide Web. http://cache-

www.intel.com/cd/00/00/29/43/294339 294339.pdf.

[78] JTC 1/SC 22/WG 14, “TR 24732: Extensions for the Programming Language

C to Support Decimal Floating Point Arithmetic.” World Wide Web, 2007.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1312.pdf.

[79] JTC 1/SC 22/WG 14, “TR 24733: C++ Decimal Floating Point

Arithmetic Extensions.” World Wide Web, 2008. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2008/n2732.pdf.

[80] Free Software Foundation, “GNU C Compiler (GCC) 4.2 Release.” World Wide

Web. http://gcc.gnu.org/gcc-4.2.

[81] IBM, “IBM C and C++ Compilers.” World Wide Web. http://www.ibm.com/-

software/awdtools/xlcpp.

[82] IBM, “IBM Enterprise PL/I V3.7.” World Wide Web. http://www.ibm.com/-

common/ssi/rep ca/6/897/ENUS207-266/index.html.

189

[83] IBM, “IBM DB2 V9.5.” World Wide Web. http://www.ibm.com/common/-

ssi/rep ca/1/897/ENUS207-261/index.html.

[84] IBM, “IBM High Level Assembler Release 6.” World Wide Web.

http://www.ibm.com/software/awdtools/hlasm/library.html.

[85] P. Shaw, “DFPAL.” World Wide Web. http://speleotrove.com/decimal/#dfpal.

[86] M. Koechl and P. Hartman and O. Rutz and P. Shah, “Decimal Floating Point

Computations in SAP NetWeaver 7.10.” World Wide Web, September 2007.

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101104.

[87] M. S. Cohen, T. E. Hull, and V. C. Hamacher, “CADAC: A Controlled-

Precision Decimal Arithmetic Unit,” IEEE Transactions on Computers, vol. C-

32, pp. 370–377, April 1983.

[88] T. E. Hull, M. S. Cohen, and C. B. Hall, “Specifications for a Variable-Precision

Arithmetic Coprocessor,” in 10th Symposium on Computer Arithmetic, pp. 127–

131, IEEE, IEEE Computer Society, May 1991.

[89] G. Bohlender and T. Teufel, “BAP-SC: A Decimal Floating-Point Processor

for Optimal Arithmetic,” in Computer Arithmetic: Scientific Computation and

Programming Languages, pp. 31–58, Stuttgart, Germany: B. G. Teubner, 1987.

[90] IA-32 Intel Architecture Software Developer’s Manual, vol. 2: Instruction Set

Reference, ch. 3: Instruction Set Reference. Intel, 2001.

[91] Motorola, “Motorola M68000 Family Programmers Reference Manual.” World

Wide Web, 1992. http://www.freescale.com/files/archives/doc/ref manual/-

M68000PRM.pdf.

190

[92] G. Kane, PA-RISC 2.0 Architecture, ch. 7: Instruction Descriptions. Prentice

Hall, 1996.

[93] ESA/390 Principles of Operation, ch. 8: Decimal Arithmetic Instructions. IBM,

2001.

[94] E. O. Carbarnes, “IBM System z10 Enterprise Class Mainframe

Server Features and Benefits.” World Wide Web, February 2008.

http://www.ibm.com/systems/z/hardware/z10ec/features.html.

[95] SilMinds, “Decimal Floating Point Arithmetic IP Cores Family.” World Wide

Web, 2008. http://www.silminds.com/resources/SilMinds-DFPA-IP-Cores-

Family.pdf.

[96] R. Eissa, A. Mohamed, R. Samy, T. Eldeeb, Y. Farouk, M. Elkhouly, and

H. Fahmy, “A Decimal Fully Parallel and Pipelined Floating Point Multiplier,”

in Asilomar Conference on Signals, Systems, and Computers, 2008.

[97] K. A. Duke, “Decimal Floating-Point Processor,” IBM Technical Disclosure

Bulletin, vol. 12, p. 862, November 1969.

[98] F. N. Ris, “A Unified Decimal Floating-Point Architecture for the Support of

High-Level Languages,” ACM SIGNUM Newsletter, vol. 11, pp. 18–23, October

1976.

[99] T. C. Chen and I. T. Ho, “Storage-Efficient Representation of Decimal Data,”

Communications of the ACM, vol. 18, pp. 49–52, January 1975.

[100] P. Johnstone and F. E. Petry, “Higher Radix Floating Point Representations,”

in 9th IEEE Symposium on Computer Arithmetic, pp. 128–135, IEEE, IEEE

Computer Society, September 1989.

191

[101] IEEE P1596.5 Working Group, ANSI/IEEE Std 1596.5-1993: IEEE Standard

for Shared-Data Formats Optimized for Scalable Coherent Interface (SCI) Pro-

cessors. New York: The Institute of Electrical and Electronics Engineers, April

1994.

[102] D. Goldberg, “What Every Computer Scientist Should Know About Floating-

Point Arithmetic,” ACM Computing Surveys, vol. 23, pp. 5–48, March 1991.

[103] D. W. Matula, “The IEEE Standard for Floating-Point Systems.” personal com-

munication. draft section of “Finite Precision Number Systems and Arithmetic”

by P. Kornerup and D. W. Matula, available upon request.

[104] M. F. Cowlishaw, E. M. Schwarz, R. M. Smith, and C. F. Webb, “A Decimal

Floating-Point Specification,” in 15th IEEE Symposium on Computer Arith-

metic, pp. 147–154, IEEE Computer Society, July 2001.

[105] R. K. Richards, Arithmetic Operations in Digital Computers. New Jersey: D.

Van Nostrand Company, Inc., 1955.

[106] B. Parhami, “Carry-Free Addition of Recoded Binary Signed-Digit Numbers,”

IEEE Transaction on Computers, vol. 37, pp. 1470–1476, November 1988.

[107] B. Shirazi, D. Y. Y. Yun, and C. N. Zhang, “RBCD: Redundant Binary Coded

Decimal Adder,” IEE Proceedings, vol. 136, part E, pp. 156–160, March 1989.

[108] J. L. Anderson, “Binary or BCD Adder with Precorrected Result,” U.S. Patent,

October 1979. #4,172,288.

[109] L. P. Flora, “Fast BCD/Binary Adder,” U.S. Patent, April 1991. #5,007,010.

192

[110] H. Fischer and W. Rohsaint, “Circuit Arrangement for Adding or Subtract-

ing Operands in BCD-Code or Binary-Code,” U.S. Patent, September 1992.

#5,146,423.

[111] U. Grupe, “Decimal Adder,” U.S. Patent, January 1976. #3,935,438.

[112] J. Thompson, N. Karra, and M. J. Schulte, “A 64-bit Decimal Floating-Point

Adder,” in Proceedings of the IEEE Computer Society Annual Symposium on

VLSI, pp. 297–298, February 2004.

[113] R. D. Kenney, M. J. Schulte, and M. A. Erle, “A High-Frequency Decimal Mul-

tiplier,” in International Conference on Computer Design: VLSI in Computers

and Processors, pp. 26–29, IEEE, October 2004.

[114] A. Vazquez and E. Antelo, “Conditional Speculative Decimal Addition,” in 7th

Conference on Real Numbers and Computers, pp. 47–57, July 2006.

[115] M. S. Schmookler and A. W. Weinberger, “High Speed Decimal Addition,”

IEEE Transactions on Computers, vol. C, pp. 862–867, August 1971.

[116] I. Koren, Computer Arithmetic Algorithms. New Jersey: Prentice-Hall, Inc.,

1993.

[117] A. Cauchy, “Calculs Numériques – Sur les moyens d’éviter les erreurs dans

les calculs numériques,” in Oeuvres Complêtes D’Augustin Cauchy, vol. 5 of 1,

pp. 431–442, Gauthier-Villars, 1840.

[118] R. D. Kenney and M. J. Schulte, “High-Speed Multioperand Decimal Adders,”

IEEE Transactions on Computers, vol. 54, pp. 953–963, August 2005.

193

[119] A. Avizienis, “Signed-Digit Number Representations for Fast Parallel Arith-

metic,” IRE Transactions on Electronic Computers, vol. EC-10, pp. 389–400,

September 1961.

[120] G. Metze and J. E. Robertson, “Elimination of Carry Propagation in Digital

Computers,” Proceedings of the International Conference on Information Pro-

cessing, pp. 389–396, June 1959.

[121] E. M. Schwarz, High-Performance Energy-Efficient Microprocessor Design,

ch. 8. Binary Floating-Point Unit Design: The Fused Multiply-Add Dataflow,

pp. 189–208. Dordrecht, The Netherlands: Springer, 2006.

[122] S. R. Carlough and E. M. Schwarz, “Decimal Multiplication Using Digit Re-

coding ,” U.S. Patent, November 2006. #7,136,893.

[123] R. H. Larson, “Medium Speed Multiply,” IBM Technical Disclosure Bulletin,

p. 2055, December 1973.

[124] R. H. Larson, “High Speed Multiply Using Four Input Carry Save Adder,” IBM

Technical Disclosure Bulletin, pp. 2053–2054, December 1973.

[125] T. Ueda, “Decimal Multiplying Assembly and Multiply Module,” U.S. Patent,

January 1995. #5,379,245.

[126] R. T. Jackson, C. Kurtz, and R. Moore, “Decimal Multiplication and Decimal-

to-binary Conversion Utilizing a Three-input Adder,” IBM Technical Disclosure

Bulletin, vol. 14, p. 543, July 1971.

[127] S. H. Angelov and S. V. Hristova, “Coded Decimal Multiplication By Successive

Additions,” U.S. Patent, May 1972. #3,644,724.

194

[128] R. L. Hoffman and T. L. Schardt, “Packed Decimal Multiply Algorithm,” IBM

Technical Disclosure Bulletin, vol. 18, pp. 1562–1563, October 1975.

[129] S. Singh and A. Weinberger, “High-speed Binary and Decimal Multiply by

Array Assist,” IBM Technical Disclosure Bulletin, vol. 18, pp. 4105–4106, May

1976.

[130] T. Ohtsuki, Y. Oshima, S. Ishikawa, K. Yabe, and M. Fukuta, “Apparatus for

Decimal Multiplication,” U.S. Patent, June 1987. #4,677,583.

[131] A. Yamaoka, K. Wada, and K. Kuriyama, “Decimal Multiplier Device and

Method Therefor [sic],” U.S. Patent, May 1988. #4,745,569.

[132] J. J. Bradley, B. L. Stoffers, T. R. S. Jr., and M. A. Widen, “Simplified

Decimal Multiplication by Stripping Leading Zeros,” U.S. Patent, June 1986.

#4,615,016.

[133] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Transactions on

Computers, vol. 13, no. 2, 1964.

[134] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, vol. 34,

pp. 349–356, 1965.

[135] J. R. Pivnichny, “High Speed Decimal Multipliers,” IBM Technical Disclosure

Bulletin, vol. 24, pp. 2612–2617, October 1981.

[136] B. Parhami, Computer Arithmetic Algorithms and Hardware Design. New York:

Oxford University Press, Inc., 2000.

[137] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,

H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli, “SIS:

A System for Sequential Circuit Synthesis,” tech. rep., 1992.

195

[138] N. T. Quach, N. Takagi, and M. J. Flynn, “Systematic IEEE Rounding Method

for High-Speed Floating-Point Multipliers,” IEEE Transactions on VLSI Sys-

tems, vol. 12, pp. 511–521, May 2004.

[139] M. S. Schmookler and K. J. Nowka, “Leading Zero Anticipation and Detection –

A Comparison of Methods,” in 15th IEEE Symposium on Computer Arithmetic,

pp. 7–12, IEEE Computer Society, July 2001.

[140] IBM Floating-Point Test Generator, “Floating-Point Test Suite for IEEE 754R

Standard.” World Wide Web. http://-www.haifa.il.ibm.com/projects/-

verification/fpgen/ieeets.html.

[141] IBM, “General Decimal Arithmetic Testcases.” World Wide Web.

http://speleotrove.com/decimal/-dectest.html.

[142] A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly Journal

of Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–240, 1951.

[143] R. M. M. Aharoni, R. Maharik, and A. Ziv, “Solving Constraints on the Inter-

mediate Result of Decimal Floating-Point Operations,” in 18th IEEE Sympo-

sium on Computer Arithmetic, pp. 38–45, IEEE Computer Society, June 2007.

196

Appendix A

Glossary

A term often has multiple meanings across different disciplines and occasionally

has multiple meanings within a discipline. The following list of terms and definitions1

is provided to clarify the meaning of most of the technical terms used in this document.

The reasoning behind the usage of radix, base, power, and exponent warrants

discussion. The term base can be used to describe the operand that is raised to a

particular power and the number system (e.g., the decimal number system is base ten).

To prevent confusion, radix is used when referring to the number system. Further,

although the term exponent is commonly the quantity to which the base is raised,

power is used instead to prevent confusion with the exponent portion of the operand.

The raising of a base by a particular power is still referred to as exponentiation,

however, as this is the common name and should not cause confusion.

actual exponent - The exponent component of an IEEE DFP entity without any

bias; the integer portion of a real number describing the order of the significand’s

LSD.

1Wikipedia.org was used as a reference.

197

addend - The operand to be added to the augend.

addition - The binary operation whereby a sum is developed whose quantity, prior

to rounding, is equivalent to the augend incremented by 1 addend times.

additive inverse - The negative of A when A is in signed-magnitude form, repre-

sented by −A, such that A+−A = 0; the unary operation whereby a difference

is developed whose quantity is equivalent to the subtraction of 0 and the subtra-

hend; the complement of A when A is in radix-complement form, represented by

A, such that A+A = S(an)−1, where A has n digits and S() is the significance

function.

AND - The binary operation whereby a result is developed by the bit-wise conjunc-

tion of two operands; e.g., if A = 1100 and B = 1010, then A ·B = 1000.

augend - The operand to which the addend is to be added.

base - The operand that is to be raised by a power.

biased exponent - See exponent.

binary coded decimal - A number system wherein a decimal digit is represented

by four binary digits of weight 23, 22, 21, and 20, respectively, from left to right.

cohort - A set of floating-point entities all of which describe the same quantity.

combination field - The fixed-length portion of an IEEE DFP entity in storage

that indicates ∞, NaN, or a normal number, and, if a normal number, contains

the leading two bits of the exponent and the leading digit of the significand.

complement - The additive inverse of an integer number stored in radix complement

form or diminished-radix complement form.

198

conformer - The operand that is to be quantized according to the template.

correspondent - The result of quantization; C = A ∝ B, where C is the corre-

spondent, A is the conformer, and B is the template whose quantum is to be

matched (i.e., S(b0)).

decimal floating-point - The set of representations of approximations of radix ten

real numbers; the arithmetic involving radix ten real numbers.

declet - A ten bit vector containing three Densely Packed Decimal digits.

densely packed decimal - An encoding scheme in which three BCD digits are com-

pressed into a ten-bit vector.

difference - The result of subtraction; D = A − B, where D is the difference, A is

the minuend, and B is the subtrahend.

digit-overlap form - A representation of a quantity as (A,B), wherein A+B equals

the quantity, the first vector is comprised of digits, and the second vector, whose

order is one higher than the first vector, is comprised of full or partial digits;

e.g., 99 × 9 = 891 can be represented as (88, 11), where 88 is an order higher

than 11.

diminished-radix complement form - A representation of integer numbers wherein

positive quantities are simply the integer numbers and negative quantities are

the integer numbers added to one less than the radix raised to one more than

the order of the MSD; i.e., (S(an)− 1)−A = A, where A has n digits and S()

is the significance function.

dividend - The operand that is to be divided by the divisor.

199

division - The binary operation whereby a quotient is developed whose quantity,

prior to rounding, is equivalent to the number of times the divisor can be sub-

tracted from dividend.

divisor - The operand by which the dividend is to be divided.

entity - A generic description for the contents of a vector, register, or memory ad-

dress, which may or may not represent a number.

exact floating-point number - A representable number in the intended format is

the infinitely precise result of the calculation.

exception - An error condition that alters the intended flow of control.

XS3 - A number system wherein a decimal digit is represented by four binary digits

of weight 23, 22, 21, and 20, respectively, from left to right and biased by a

positive three.

exponent - The number describing the order of the LSD of the integer portion of the

significand; the fixed-length, component of an IEEE DFP entity, which, together

with two bits from the combination component forms a binary, natural number

describing the order of the LSD of the integer portion of the significand and

biased to make the range of orders nonnegative.

exponent bias - A constant added to the order of a floating-point number to make

the adjusted range of orders nonnegative; a constant added to the order such

that the order of the smallest significand is nonnegative for a given IEEE DFP

format.

exponentiation - The binary operation whereby a yield is developed whose quantity,

prior to rounding, is equivalent to the base multiplied by itself power times.

200

exponent range - The number of different orders the significand’s LSD can have

for a given IEEE DFP format; the difference between the maximum exponent

and the minimum exponent.

finite floating-point number - A floating-point entity that is either zero or a sub-

normal or normal number.

fixed-point number - A representation of a subset of the real numbers and rounded

irrational numbers as a fixed-length vector with a fixed amount of digits to the

right of the radix point.

floating-point number - A representation of a subset of the real numbers, rounded

real numbers, and rounded irrational numbers in a fixed-length format com-

prised of a sign bit, a natural number significand, and a natural number expo-

nent in the form −1sign × significand× radixexponent.

following exponent - The fixed-length portion of an IEEE DFP entity in storage,

which, together with two bits from the combination field, comprises the expo-

nent component.

format - The arrangement of data within a fixed-length vector.

full tuple set - All the single-digit multiples of the multiplicand (1-tuple through

(radix− 1)-tuple).

inexact floating-point number - A representable number in the intended format

that is closest to the infinitely precise result of a calculation, based on the

rounding mode of the calculation.

infinite floating-point number - A floating-point entity that represents all num-

bers larger in magnitude than the largest representable number.

201

intended format - The set of fixed-length, IEEE DFP entities onto which a result

must be mapped.

least significant bit - The lowest order bit in a digit or a vector; the furthest-right

bit in a digit or a vector.

least significant digit - The lowest order digit in a vector; the furthest-right digit

in a vector.

logical negation - The unary operation whereby the truth value is inverted; equiv-

alent to performing the arithmetic operation of diminished-radix complement

in radix two (i.e., ones’ complement).

maximum exponent - The largest, unbiased order of a significand’s LSD for a given

IEEE DFP format.

minimum exponent - The smallest, unbiased order of a significand’s LSD for a

given IEEE DFP format.

minterm - A product term in a Boolean equation comprised of one or more variables,

each appearing at most once in either its true or complement form.

minuend - The operand from which the subtrahend is to be subtracted.

most significant bit - The highest order bit in a digit or a vector; the furthest-left

bit in a digit or a vector.

most significant digit - The highest order digit in a vector; the furthest-left digit

in a vector.

202

multiplication - The binary operation whereby a product is developed whose quan-

tity, prior to rounding, is equivalent to the multiplicand added to itself multiplier

times.

multiplicative inverse - The reciprocal of A, represented by A−1, such that A ×
A−1 = 1; zero does not have a reciprocal.

multiplicand - The operand that is to be multiplied by the multiplier; operand A

in a fixed-point multiply and CA in a floating-point multiply; the value which is

added to itself multiple times as specified by the value of the multiplier value.

multiplier - The operand by which the multiplicand is to be multiplied; operand B

in a fixed-point multiply and CB in a floating-point multiply; the value which

dictates the number of times the multiplicand is added to itself.

negative - The additive inverse of a quantity in signed-magnitude form.

negative floating-point number - A floating-point representation whose sign bit

is set and is either zero or a subnormal, normal, or finite number.

normal floating-point number - A floating-point representation that is a non-zero

number whose exponent is within the range of its format.

NOT - The unary operation whereby a result is developed by bit-wise logical nega-

tion of the operand; e.g., if A = 10, then A = 01.

not-a-number - A cohort designed to provide test and diagnostic capability in a

floating-point system at the expense of a small reduction in the number of

distinct representable numbers.

null addition - The unary operation whereby a sum is developed whose quantity is

equivalent to the addition of 0 and the addend.

203

operand - An input vector to an algorithm, logic equation, or circuit.

predicate - An operation that affirms or denies a proposition about its operand.

OR - The binary operation whereby a result is developed by the bit-wise disjunction

of two operands; e.g., if A = 1100 and B = 1010, then A + B = 1110.

order - An integer number describing a digit’s positional significance as a power of

the radix; the distance a digit is from the radix point (left of the radix point is

positive, right of the radix point is negative); e.g., the 5 in 500D and the 1 in

100B are both order 2; a vector A is of a higher order than a vector B if the

S(a0) > S(b0).

overloaded decimal representation - In this representation, each four-bit group-

ing of binary bits corresponds to a decimal digit and has the same weights as

BCD-8421 code, however, its value can exceed ten.

partial product - The intermediate cumulative sum of repeated additions obtained

during execution of a multiplication algorithm.

partial yield - The intermediate successive product of repeated multiplications ob-

tained during execution of an exponentiation algorithm.

power - The operand by which the base is to be raised; the number of times the

base is repetitively multiplied.

precision - The number of digits in the significand component for a given IEEE

DFP format.

predicate - A proposition that is affirmed or denied.

204

product - The result of multiplication; P = A × B, where P is the product, A is

the multiplicand, and B is the multiplier.

quantum - The positional significance of a vector’s LSD; e.g., 501.907 has a quantum

of 10−3; in the IEEE DFP number system, the quantum is equal to ten raised

to the exponent minus the bias of the exponent.

quantization - The binary operation whereby a correspondent is developed whose

quantity is the conformer’s significand properly adjusted and rounded if neces-

sary such that its quantum matches the quantum of the template.

quiet not-a-number - A subset of the cohort of NaNs that, as an operand, propa-

gates through an operation but does not signal an exception.

quotient - The result of division; Q = A / B, where Q is the quotient, A is the

dividend, and B is the divisor.

radix - The base of a number system.

radix complement form - A representation of integer numbers wherein positive

quantities are simply the integer number and negative quantities are the integer

numbers added to the radix raised to the next higher order of the MSD; i.e.,

S(an)− A = A + 1, where A has n digits.

reciprocal - The multiplicative inverse of an operand.

minimum remainder - The binary operation whereby a smallest magnitude quan-

tity is developed to which can be added an integer multiple of the divisor to

produce the dividend; e.g., 8[/]3 = 1.

partial tuple set - A subset of all the single-digit multiples of the multiplicand

(1-tuple through (radix− 1)-tuple).

205

representation - The set of IEEE DFP floating-point entities that all describe the

same class of entities.

result - An output vector from an algorithm, logic equation, or circuit.

secondary multiple set - A partial tuple set from which all the single-digit mul-

tiples of the multiplicand (1-tuple through (radix − 1)-tuple) can be obtained

through the sum or difference of at most two of its elements.

self-complementing - When the additive inverse can be achieved through logical

negation.

sign bit - See sign indicator field.

sign indicator field - The fixed-length portion of an IEEE DFP entity in storage

that indicates if a DFP number is negative or nonnegative; a single-bit compo-

nent of a DFP number wherein 1 indicates a negative quantity and 0 indicates

a nonnegative quantity.

signaling not-a-number - A subset of the cohort of NaNs that, as an operand,

is converted to a quiet NaN and signals an exception, unless exceptions are

disabled or the operation is one that does not signal exceptions.

signed-magnitude form - A representation of integer numbers wherein only nat-

ural numbers are used along with a bit or digit to indicate if the quantity is

positive or negative.

significance - The weight of a digit.

significand - The portion of an IEEE DFP quantity which describes the coefficient

of the number.

206

subnormal floating-point number - A floating-point representation that is a non-

zero, finite number whose order is less than the minimum exponent of its format.

subtraction - The binary operation whereby a difference is developed whose quan-

tity, prior to rounding, is equivalent to the subtrahend decremented by 1 min-

uend times.

subtrahend - The operand that is to be subtracted from the minuend.

sum - The result of addition; S = A + B, where S is the sum, A is the augend, and

B is the addend.

sum of products - A boolean equation in which the output is expressed as the OR

(sum) of AND terms (products).

template - The operand whose quantum is to be matched when the conformer is

quantized.

tertiary multiple set - A partial tuple set from which all the single-digit multiples

of the multiplicand (1-tuple through (radix−1)-tuple) can be obtained through

the sum or difference of at most three of its elements.

trailing significand - The fixed-length portion of an IEEE DFP entity in storage,

which, together with one digit from the combination field, comprises the signif-

icand component.

tuple - A multiplicand multiple; when a specific multiple needs to be addressed, the

quantity of the multiple is a hyphenated prefix of the word “tuple” or a prefix

of the variable name, e.g., A’s septuple is referred to as the 7-tuple of A or 7A.

unbiased exponent - See actual exponent.

207

unordered - A relation indicating the comparison was illogical or not in order, i.e.,

at least one of the operands was a NaN.

vector - A one-dimensional array of one or more digits in which multiple digits are

arranged in decreasing order from left to right.

weight - A positive, rational number describing a digit’s positional significance equal

to radixorder; i.e., the significance of the digit.

weighted compressor - An electronic circuit that accepts two or more digits of the

same order, said digits comprised of two or more bits of different weights, and

produces a minimal length output in digit-overlap form; e.g., a two-digit BCD-

weighted compressor accepts two, four-bit BCD inputs and produces a four-bit

BCD output of the same order as the inputs and a one-bit BCD output of the

next higher order.

XOR - The binary operation whereby a result is developed by the bit-wise exclusive

disjunction of two operands; e.g., if A = 1100 and B = 1010, then A⊕B = 0110.

yield - The result of exponentiation; Y = A ∧ B, where Y is the yield, A is the base,

and B is the power.

208

Appendix B

Notation

This appendix describes the mathematical and logical notation used throughout

this dissertation when discussing the data, the algorithms, and the logic equations.

DFP operands and results can be represented using the following equation, com-

prised of three components:

FP = −1s × C × 10E (B.1)

where s is the single-bit sign indicator (0 or 1), C is the fixed-length, natural number

significand, and E is the fixed-length, natural number exponent, which is a biased

form of the actual exponent. For reasons explained in Section 2.4, four fields are used

to store the three components. Figure B.1 graphically lists the four fields used to

store all DFP entities. (The figure is not to scale.)

Table B.1 lists the components and fields of a DFP entity and their symbols and

names. Specific information, such as the data formats, the encoding of the significand,

and the range of the exponent is described in Section 2.4.2.

Letters are used as variable names for FP numbers and their components (e.g.,

209

sign indicator combination following exponent trailing significand

Figure B.1: DFP Storage Fields

Table B.1: Notation and Nomenclature of DFP Entity Components and Fields

Symbol Name

i sign indicator field/component

G combination field

F following exponent field

E biased exponent - two MSD bits from G concatenated with F

T trailing significand field

C significand - one MSD digit from G concatenated with T

significands, exponents). When dealing with FP numbers, A, B, and C are used for

operands, and the remaining letters are available for results. The letter chosen for a

result is a matter of convenience and is often related to the operation. For example, P

for the product of a multiplication. The use of A, B, and C is primarily to emphasize

the importance the ordering of the operands has in the operation’s algorithm. For

unary operations such as the negative, the operand is labeled A. For binary operations

such as addition and quantize, the operands are labeled A and B. And for ternary

operations such as fused multiply-add, the operands are labeled A, B, and C.

Further, A is used for the operand on which a particular operation is performed or

the operand upon which another operand acts. For example, A is used for the augend,

minuend, multiplicand, dividend, conformer, and base. B is used for the active second

operand. Example uses of B include the addend, subtrahend, multiplier, divisor,

210

template, and power. C is used for the third operand, which may be a passive or

active operand.

To distinguish different forms of data, an upper case variable denotes FP numbers

or words comprised of digits, a lower case variable denotes a decimal digit or bit, and

a lower case variable with a bracketed number denotes a bit of a digit. To indicate a

specific digit, a subscript may follow a lower case variable. A subscript following an

upper case variable is used to indicate number or words which are part of an iterative

equation. Finally, superscripts denote some unique aspect about the variable, such

as incremented by one. As examples, p[0] corresponds to bit 0 of the product P , pi[j]

corresponds to the jth bit of the ith digit of the product P , and p+1
i [j] corresponds

the jth bit of the ith digit of the incremented product P . Examples of data notation

are found in Table B.2.

Symbol Meaning

P number or multiple-digit word

P+0, P+1 non-incremented word P and incremented word P

Pi P after ijh iteration

pi[j] jth bit of the ith digit of P

pi[0 : 3] bits 0 to 3 of the ith digit of P

Table B.2: Notation of Operands and Data

Table B.3 contains a listing of the unary arithmetic operation symbols, how

they are read, and the operation they represent. The complement operation is the

diminished-radix complement, which in the general case, is distinctly different than

logical negation. The radix complement is expressed as (A + 1).

Table B.4 contains a listing of the binary arithmetic operation symbols, how they

are read, the operation they represent, and the name of their operands and results.

211

Table B.3: Unary Arithmetic Operations and Symbols

Symbol Read Operation Operand Result

+a[i] positive null addition addend sum

−a[i] negative additive inversion subtrahend difference

(signed-magnitude)

a[i] complement of additive inversion true value complement

(diminished-radix)

common exponentiation operations

a[i]
1
2 square root of square root extraction radicand radical

a[i]−1 reciprocal of multiplicative inversion recipricand reciprocal

Table B.4: Binary Arithmetic Operations, Symbols, and Operand Names

Symbol Read Operation Operands Result

+ plus addition augend, addend sum

− minus subtraction subtrahend, minuend difference

× or · times multiplication multiplicand, multiplier product

/ divided by division dividend, divisor quotient
∧ raised to exponentiation base, power yield

∝ proportional to quantization conformer, template correspondent

The result name for the exponentiation operation and the symbol, operand names,

and result name for quantization were developed for this dissertation. To reduce the

length of an equation, multiplication can be implied by placing two variables next

to each other without the × symbol in between (e.g., A × B = AB). Additionally,

exponentiation can be implied by placing two variables next to each other without

the ∧ symbol in between and superscripting the power operand (e.g., A∧B = AB).

Ternary arithmetic operations are expressed by placing a brace over the operands

212

and symbols. For example, the fused-multiply add operation is represented by
︷ ︸︸ ︷
A×B + C.

Table B.5: Logic Operations and Symbols

Symbol Read Operation

a[i] NOT negation (unary)

a[i] ∨ b[j] OR inclusive-disjunction or disjunction

a[i] ∨ b[j] NOR inverse disjunction

a[i] ∧ b[j] AND conjunction

a[i] ∧ b[j] NAND inverse conjunction

a[i]⊕ b[j] XOR exclusive-disjunction

a[i]⊕ b[j] XNOR correlation

Table B.6: Truth Tables of Logic Operations

a[i] b[j] NOT a[i] AND NAND OR NOR XOR XNOR

0 0 1 0 1 0 1 0 1

0 1 1 0 1 1 0 1 0

1 0 0 0 1 1 0 1 0

1 1 0 1 0 1 0 0 1

Table B.5 contains a listing of the logic symbols, how they are read, and the

operation they represent. To reduce the length of an equation, AND can be implied

by placing two variables next to each other without the ∧ symbol in between (e.g.,

a[0] ∧ b[0] = a[0]b[0]). Truth tables for each of the logic operations are included in

Table B.6.

The precedence and associativity of the operators are listed in Table B.7 in order

of decreasing precedence from top to bottom. Parentheses are used to alter the

213

Table B.7: Operator Precedence

Symbol Operation Associativity

∧ exponentiation right to left

× or ·, / multiplication, division left to right

+a[i], −a[i] null addition, additive inversion right to left

+, − addition, subtraction left to right

∝ quantization right to left

∨ (logical), a[i] ∨ b[j] disjunction left to right

∧, a[i] ∧ b[j] conjunction left to right

⊕, a[i]⊕ b[j] exclusive-disjunction, correlation left to right

A (logical) negation left to right

precedence or associativity, or to improve readability.

214

Appendix C

Vita

Upon graduating from Parkland High School in 1984, I enlisted in the United

States Army. During my two years in the military, I completed a number of skills

assessment and interest inventory surveys to assist me in choosing my field of study

in college. The results of these assessments indicated an aptitude/preference for

engineering. I applied for admission to the College of Engineering at The Pennsylvania

State University, and started in January of 1987.

I attended Penn State year-round and completed my degree in three and one half

years. In the fall semester of my final year, I was offered employment with IBM. I was

also accepted into the doctoral program in physics at Lehigh University but decided

to obtain work experience before furthering my education. Therefore, in September,

1990, I joined a team of engineers responsible for verifying the architecture of a

personal computer microprocessor at the IBM Williston Laboratory in Vermont.

Although I was obtaining significant knowledge of microprocessor architecture

and verification, after a short while I developed a strong desire to be a VLSI circuit

designer. To position myself to enter circuit design, I entered the master’s program

at The University of Vermont. With IBM as my sponsor, I studied VLSI design and

215

manufacturing, computer architecture, and compiler design on a part-time basis.

Also around this time (1992), IBM asked me to lead an effort to reduce the com-

pany’s dependence on scan-based manufacturing testing of its microprocessors. I

accepted this challenge as it afforded me the opportunity to learn about manufactur-

ing test and behavioral model development and broaden my skills as a leader. In a

little over three years, I completed this effort, culminating in the successful fault sim-

ulation of a dual-architecture microprocessor. That same year, 1996, I completed my

studies and received a master’s degree in electrical engineering from The University

of Vermont.

Soon thereafter, IBM focused its attention on significantly increasing the oper-

ational frequency of its server microprocessors. An opportunity presented itself in

the form of a fledgling processor development team in need of designers. I seized the

chance to move into a circuit design position at the IBM Advanced Semiconductor

Technology Center in New York.

I worked as a circuit designer for nearly four years, designing a portion of its BFP

execution unit. This microprocessor, Power4, was made generally available with an

operating frequency in excess of 1.0 GHz. Due to its high frequency, the project

presented significant challenges. In spite of the success of these products and the

satisfaction I gained while working on this program, I once again found myself with

the desire to continue my education.

In the fall of 2000, I approached my management team with a request to pursue

my doctorate. IBM agreed to sponsor my studies full-time at Lehigh University, and

I entered the computer engineering program in the fall of 2001. I completed all my

course work and passed my qualification exam in two years. Shortly thereafter, I

went back to work full-time, assisting with the circuit design of a server processor

and, subsequently, the logic design of a mainframe processor. What is noteworthy

216

about these processors, which were announced in the IBM p590 and z10 machines, is

that both of these supported DFP in hardware. Over the last year and a half, I have

been designing and developing circuitry surrounding the instruction cache related to

instruction fetch and decode.

While working full-time the past four years, I have performed and published ad-

ditional research, culminating with this dissertation.

217

