Decimal Arithmetic Encoding
Strawman 1

5th July 2002

Mike Cowlishaw

IBM Fellow
IBM UK Laboratories
mfc@uk.ibm.com

Draft — Version 0.72

Table of Contents

Introduction 1

Scope 2
Objectives 2
Inclusions 2
Exclusions 2

Specification 3
Fields in the encodings 3
The value of an encoded number 5
Single precision encoding 5
Double precision encoding 5
Ordering of fields and bits in the encodings 6
Other recommended encodings 6

Appendix A - Rationale 7
Representation of the coefficient 9
Representation of the exponent 11
Representation of the special values 13
Ordering of the fields 15
Length of the exponent 16

Appendix B - Changes 18

Index 19

Draft — Version 0.72

Introduction

This document describes proposed encodings suitable for supporting the general purpose
decimal arithmetic defined in the General Decimal Arithmetic Specification.!

This proposal has been submitted to the committee which is currently revising the IEEE
754-1985 standard.? This committee intends to add decimal encodings to the next version
of the standard; as a result of this process it is expected that the standardized encodings
will be similar in principle but different in detail from those proposed here.

The primary audience for this document is implementers, so examples and explanatory
material are included. Explanatory material is identified as Notes, Examples, or foot-
notes, and is not part of the formal specification.

Additional explanatory material can be found in the paper A Decimal Floating-Point
Specification.® For further background details, including other specifications and related
decimal arithmetic links, please see the material at the associated web site:
http://www2.hursley.ibm.com/decimal

Appendix A (see page 7) details the rationale behind the various choices made to arrive
at the current specification.

Appendix B (see page 18) summarizes the changes to this specification since the first
public proposals.

Comments on this draft are welcome. Please send any comments, suggestions, and cor-
rections to the author, Mike Cowlishaw (mfc@uk.ibm.com).

Acknowledgements

The author is indebted to Glenn Colon-Bonet, Dave Raggett, Fred Ris, Eric Schwarz,
Ronald Smith, and Charles Webb, who have all directly contributed to this document.

Also, of course, thanks are due to the contributors to earlier work in the area — especially
the members of the Radix-Independent Floating-Point Arithmetic Working Group of the
Microprocessor Standards Subcommittee of the IEEE, and the members of the X3
Secretariat/CBEMA (now NCITS) Subcommittee J18.

1 Seehttp://www2.hursley.ibm.com/decimal/decarith.html

2 ANSI/IEEE 754-1985 — IEEE Standard for Binary Floating-Point Arithmetic, The Institute of Electrical
and Electronics Engineers, Inc., New York, 1985.

3 A Decimal Floating-Point Specification, Schwarz, Cowlishaw, Smith, and Webb, in the Proceedings of the

15th IEEE Symposium on Computer Arithmetic (Arith15), http://arithl5.polito.it , IEEE, June
2001

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 1

Scope

Objectives

This document describes proposed encodings (concrete representations) which are suit-
able for supporting the general purpose decimal arithmetic defined in the General
Decimal Arithmetic Specification.*

Inclusions

This specification defines the following:

= The format and layout of single and double precision decimal numbers (64 and 128
bits respectively)

< The range of numerical values which can be represented by the encodings
< The range of precisions which can be represented by the encodings
= Recommendations for other fixed sizes of decimal encodings.

Exclusions

This specification does not define the following:

= The semantics of arithmetic and other operations on encoded numbers
< Exceptions and other consequences of operations on encoded numbers
= Encodings of context information

< Encodings for arbitrary precision decimal arithmetic beyond the sizes for which
recommendations are made.

4 See http://www2.hursley.ibm.com/decimal/decarith.html

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 2

Specification

This section defines the proposed encodings for both single and double precision decimal

numbers.

Both precisions allow for values of +0, tInfinity, and two kinds of Not-a-

Number (NaN) values (which may be signed).
A single precision number is encoded in 64 consecutive bits.

A double precision humber is encoded in 128 consecutive bits.
Recommendations are also included for representations of some other useful lengths.

Fields in the encodings

Each encoding comprises four fields, whose length and permitted range of values may
vary depending on the encoding.

The fields are:

1.

sign — a single bit indicating the polarity of the number.

In numbers for which the sign has meaning (for ordinary numbers, Infinity, and
possibly NaN) a 1 indicates the number is negative (or negative zero) and a 0 indi-
cates it is positive or non-negative zero. Where the sign does not have meaning it
must be 0.

exponent — an unsigned (non-negative) binary integer in the range 0 through 2"-1,
where n is the number of bits in the field. Some encodings in this range are not used.

The exponent has the following characteristics:

For numbers (encodings which are not special values, that is, neither infinite nor
a NaN), the value of the exponent is given by subtracting a bias from the binary
integer in the field. In all cases, the bias is given by 2"7'_1, where n is the
number of bits in the field, as before.

The range of values used for the exponent is limited by the value E__,, which is
typically related to an integral number of decimal digits and depends on the
length of the encoding. The maximum value used is E_, and the minimum
value used is given by negating the value of E_, +d-1, where d is the maximum
length of the coefficient in decimal digits (see below).

For example, if E, is +999 and d is 15, then the range of exponent values used
for numbers is -1013 through +999.

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 3

= The special values are encoded in the binary integer of the exponent field thus:
Infinity is encoded as the binary integer 2
Quiet NaN is encoded as the binary integer 1
Signaling NaN is encoded as the binary integer 0.°

= All other possible values of exponent are not valid and must not be used. Note
that in the future some of these values could be used to extend the encoding and
would then become valid.

3. padding — zero or more bits, depending on the length of the encoding, which are used
to ensure right-alignment of the final field. The padding bits must all be 0.

4. coefficient — an unsigned (non-negative) integer in the range 0 through 10°-1, where
d is the maximum length of the integer in decimal digits.

The coefficient fills the remainder of the encoding. It is encoded as zero or more
groups of 10 bits, possibly preceded by a group of either 4 or 7 bits, depending on the
length of the encoding.

Each 10-bit group represents three decimal digits, using Densely Packed Decimal
encoding.® A 4-bit or 7-bit group represents one or two decimal digits respectively,
using the same encoding.

Within the coefficient, the most significant group is on the left (is placed first). For
example, if the coefficient were five decimal digits long, it would be encoded with the
two most significant digits first (in a group of 7 bits) followed by the hundreds, tens,
and units digits encoded in a group of 10 bits.

The number of decimal digits required to represent the value of the coefficient is
called the length of the value of the coefficient, which is a positive number (a value
of 0 has length 1). This length will often be smaller than the space available in the
encoding; in this case leading 0 digits are added before encoding (that is, the coeffi-
cient is right-aligned).

The coefficient is undefined when the exponent indicates that the number is a special
value. In this case, an implementation may use the bits in the field for its own pur-
poses (for example, to indicate the origin of a NaN value).

The length of the value of the coefficient may further restrict the possible values of the
exponent. In the arithmetic defined in the X3.274 subset of the specification, the value of
the exponent must be in the range -E_,,-(d-1) through E__-(d-1), where d here is the
length of the value of the coefficient. The lower bound is extended down to the smallest
exponent value that can be used (independent of the value of the coefficient) when the full
specification is followed, because this allows subnormal numbers.’

5 An encoded number whose bits are all zero therefore has the value signaling NaN, not 0.

6 See http://www2.hursley.ibm.com/decimal/DPDecimal.html for a summary of Densely
Packed Decimal encoding.

7 Subnormal numbers are those below the balanced range of IEEE 854 exponents (see page 16).

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 4

The value of an encoded number

The value of an encoding is either a special value (see page 4), or it is a finite number
whose numerical value is given exactly by: (-1)*" x coefficient x 10°*™", where each name
represents the value of the named field.

For example, if the sign had the value 1, the exponent had the value -2, and the coefficient
had the value 250, then the numerical value of the number is exactly -2.5.

Note that more than one encoding may have the same numerical value; if the sign again
had the value 1, but the exponent had the value -1 and the coefficient had the value 25,
then the numerical value of the number would also be exactly -2.5.

These redundant encodings allow the representation of numbers with trailing fractional
zeros, which often convey additional information about a decimal number beyond its
simple numerical value.®

Single precision encoding

A single precision decimal number is encoded in 64 bits, with the following parameters
defining the fields:

sign 1 bit

exponent 11 bits; E_,, is +999

padding 2 bits

coefficient 50 bits (encoding up to 15 decimal digits)

Double precision encoding

A double precision decimal number is encoded in 128 bits, with the following parameters
defining the fields:

sign 1 bit

exponent 15 bits; E,,, is +9999

padding 2 bits

coefficient 110 bits (encoding up to 33 decimal digits)

8 See http://www2.hursley.ibm.com/decimal/decifag.html#tzeros

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 5

Ordering of fields and bits in the encodings

The fields of encodings are laid out in the order they are described in the section Fields
in the encodings (see page 3), with the first (sign) field being considered the most signif-
icant and the coefficient being the least significant field.

Within each field, the most significant bit (for the exponent) or the most significant code
group (for the coefficient) is placed first. The bits of any padding field are always 0 and are
unordered.

The network byte order (the order in which the bytes of an encoding are transmitted in a
network protocol such as TCP/IP) of an encoding is such that the byte which includes the
sign is transmitted first.

Example:
In single precision, the fields are laid out as follows:

Bits 1 11 2 50
Content Sign Exponent Pad Coefficient

Hence, the number -7.50E+11 would be encoded (in hexadecimal, shown in network byte
order) as:

CO 80 00 00 0O 00 03 DO

The first bit is 1, indicating that the number is negative. The exponent will be 9 plus the
bias (1023) giving 1032 (hexadecimal 408). The coefficient will be 750, which is encoded
as the ten bits 1111010000 and right-aligned in the coefficient field.

Other recommended encodings

The following parameters are recommended for decimal numbers of other lengths. The
parameters for the single and double precision encodings described above are also
included in this table, for comparison.

Length Sign Exponent Padding | Coefficient
Length E nax Length Digits

32 1 bit 7 bits +49 0 24 bits 7

64 1 bit 11 bits +999 2 bits 50 bits 15

80 1 bit 15 bits +9999 0 64 bits 19
128 1 bit 15 bits +9999 2 bits 110 bits 33
192 1 bit 17 bits +49999 0 174 bits 52
256 1 bit 18 bits +99999 0 237 bits 71

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 6

Appendix A — Rationale

This section, which is not part of the encoding specification, describes the design rationale
that led to the encoding specified in the body of this document (see page 3).

The primary design goals are that the representation should be suitable for:

(Goall) efficient hardware or software implementation of decimal floating-point (that
is, where the exponent indicates a power of ten)

(Goal2) representing numbers to be used for the floating-point and integer decimal
arithmetic defined in ANSI X3.274-1996,° including the subset defined in
ECMA-334* and ECMA-335%

(Goal3) representing numbers and values to be used for the floating-point arithmetics
defined in ANSI/IEEE 854-1987.12

(Goal4) efficient use of existing integer or fixed-point decimal data (in binary coded
decimal)

(Goal5) future enhancements.

These goals can be satisfied by a representation which comprises two integers (both of
which may be positive, zero, or negative). One is a coefficient of a power of ten, and the
other is an an appropriately bounded exponent (the power of ten). In addition, it is nec-
essary to allow for a negative zero, and at least four special values from IEEE 854
(including zinfinity, Quiet NaN, and Signaling NaN), and some means to allow for future
expansion.

Further, existing hardware architectures suggest that the representations be 32, 64, 80,
or 128 bits in length. This rationale concentrates on 64-bit and 128-bit representations,
forming the single and double precisions described by IEEE 854. (IEEE 854 requires that
there be a single precision and recommends that there should be an extended precision;
double precision satisfies the requirements for single-extended precision.)

The remainder of this rationale takes this form of representation, and the two precisions,
as given. This still allows considerable flexibility in the representation. To facilitate

9 American National Standard for Information Technology — Programming Language REXX, X3.274-1996,
American National Standards Institute, New York, 1996.

10 Standard ECMA 334 — C# Language Specification, ECMA, Geneva, December 2001.
11 Standard ECMA 335 — Common Language Infrastructure (CLI), ECMA, Geneva, December 2001.

12 |EEE 854-1987 — IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute of
Electrical and Electronics Engineers, Inc., New York, 1987.

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 7

discussion, each design choice below is identified by a letter, and each concrete proposal
is numbered. The proposals contain only factual material; subjective comments are con-
tained in a discussion section. Notes contain other, non-controversial, background
information.

The specific choices below are:

A. Representation of the coefficient (see page 9)
Representation of the exponent (see page 11)
Representation of the special values (see page 13)
Ordering of the fields (see page 15)

moow

Length of the exponent (see page 16).

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 8

Representation of the coefficient

A.1l | Binary (the This allows the greatest number of decimal digits in a given
coefficient is a amount of storage, the fastest multiplication or division, and
plain binary the fastest addition when two numbers have the same expo-
number) nent. Extra processing is required for shifting numbers

during addition or subtraction when the exponents differ, for
conversions to and from character form, for conversions to
and from BCD form (Goal4), and for rounding to a given
number of decimal digits (for Goal?2).

A.2 | Binary Coded BCD allows efficient loading and storage of existing data
Decimal (BCD: decimal formats (notably Packed Decimal data), efficient
4 bits per digit, | rounding to a specified number of decimal digits (required for
weighted Goal2 and Goal3), and simple conversions to and from char-
8.4.2.1) acter form. A secondary advantage is that the value is easily

readable when the representation is displayed as a
hexadecimal “dump”. However, BCD arithmetic is more
complex than a pure binary arithmetic, and fewer digits can
be encoded in a given number of bits.

A.3 | Chen-Ho encod- | Chen-Ho encoding compresses three decimal digits into 10
ing (10 bits per | bits with a 0.34% wastage, giving a 20% more efficient
3 digits) encoding than simple BCD. BCD encoding can be derived

from Chen-Ho encoding using boolean combination, without
multiplications or divisions. Extra processing is required to
convert between BCD and Chen-Ho, or to work directly on
Chen-Ho encoded numbers.

A.4 | Densely Packed | Densely Packed Decimal encoding compresses three decimal
Decimal encod- | digits into 10 bits using a modified Chen-Ho encoding.
ing (10 bits per | Unlike Chen-Ho encoding, it is not limited to multiples of
3 digits) three digits, numbers can be padded without re-encoding,

and BCD encoding is preserved for the numbers 0-79.
Discussion

The primary advantage of A.1 is that it would allow 33 decimal digits to be encoded in
a 128-bit floating-point representation (including an exponent), along with very fast
operations when no rounding or alignment is necessary.

A.2 seems an attractive choice, due to the simplicity of using existing decimal data (which
are often encoded in BCD format). However, even with no exponent only 31 digits (with
a sign) can be encoded in 128 bits. This is insufficient, given that numbers can often
approach this length and (for example) the forthcoming COBOL standard?®® requires that
intermediate results be computed to 32 digits. A.2 is therefore not a viable candidate.

13 |SO/IEC standard 1989:2002 — Information technology – Programming languages, their environ-
ments and system software interfaces – Programming language COBOL, ISO/IEC, publication date

thd

Draft — Version 0.72

Copyright (c) IBM Corporation 2000, 2002. All rights reserved.

A.3 and A4, like A.1, would allow up to 33 digits in a 128-bit representation (with expo-
nent), with better performance for rounding and conversions than A.1l. However, a
hardware implementation would require either additional encoding and decoding (lead-
ing to a wider-than-128 bits internal BCD representation) or additional (coded 10-bit
base) processing units.

On balance, the extra processing costs associated with A.1 (especially the costs and
complexity of conversion from BCD and character formats and of rounding to a decimal
precision after operations) make this choice inferior to A.3 and A.4, despite the increased
complexity of these.

Of the latter, A.4 is the better choice, because of its ability to encode arbitrary-length
decimal data (and hence make best use of the space available in all formats) and because
it allows conversions between lengths to be carried out simply by adding or stripping
leading zero bits.

Notes

1. Chen-Ho encoding is described in Storage-Efficient Representation of Decimal Data,
Tien Chi Chen & Irving T. Ho, CACM (18)1, pp.49-52, January 1975. A summary
is available.*

2. Densely Packed Decimal encoding is described in a paper by the author, recently
accepted for publication by the IEE in the UK. A summary is available.*

3. Other 3 in 10 bit encodings are possible. For example, simple base 1000 binary
encoding would allow byte-by-byte comparison of humbers provided their exponents
and sign were the same. Base 1000, however, is more costly to convert to or from
BCD.

4. With BCD encoding, the sign would held separately, either as a “packed decimal”
sign digit, or as a single sign bit. Either scheme allows for -0 as a value.

5. With Binary encoding, the coefficient could either be twos-complement, biased, or
unsigned. In the first two cases a special value would be required to encode -0; in
the third case a separate sign bit would be used.

6. Other representations investigated but not under consideration include Bi-quinary,
Gray, Excess-3, 2-of-5, 1-0f-10, 6.3.1.1, 2.4.2.1, negadecimal (base -10), 3-digit/10-bits
(base 1000), and the Base/1 Number Class encoding.®

14 See http://www2.hursley.ibm.com/decimal/chen-ho.html for the summary.
15 See http://www2.hursley.ibm.com/decimal/DPDecimal.html for the summary.
16 See http://www.boic.com for a description of the Base/1 Number Class.

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 10

Representation of the exponent

B.1 | Binary twos- This allows the greatest range of exponent in a given amount
complement of storage, and fast processing. If all the bits in an encoding
were set to zero then the exponent would be zero. Extra
processing is needed for conversions to and from character

form.

B.2 | Binary with This allows the same range of exponent as twos-complement,
bias (all expo- with faster processing. In hardware, comparisons are sim-
nents appear pler when testing for a restricted range of exponents or when
positive, and comparing exponents. Binary floating-point implementa-
unsigned) tions usually use a biased exponent. Extra processing is

needed for conversions to and from character form.

B.3 | Binary Coded BCD allows simple conversions to and from character form,
Decimal (BCD) | and implicitly restricts the exponent to an exact number of
digits (that is, no explicit hardware or software check would
be needed). A secondary advantage is that the value is easily
readable when the representation is displayed as a
hexadecimal “dump”. A smaller range of exponents would
be available for a given space, with a significant reduction for
single precision using the likely layout.

Discussion

If a binary representation is chosen, then B.2 has the advantage over B.1 and would be
the preference.

B.3 seems to be an attractive choice in that it appears to force the “natural” decimal limit
to the exponent normally required by software, and would have a certain subjective ele-
gance if both numbers in the representation were encoded in the same manner. However,
there are two disadvantages:

1. A significantly reduced exponent range would be available, especially for single
precision or smaller encodings.

For example, if choice A.2 were made (BCD integer) then the space available for sign,
flags, and exponent would be a multiple of 4 bits, with 12 bits (the same number as
IEEE 754) being an obvious choice. With 12 bits available, choice B.3 would force
a 2 digit exponent (-99 through +99) whereas with binary encoding a 3 digit expo-
nent would be possible (-999 through +999).

2. As discussed below (see page 16), the exponent in the representation will have a
smaller upper bound than lower bound, and hence the range of values of the expo-
nent is larger than twice the power of ten which defines the limit. A BCD repre-
sentation therefore would require one more digit than might be expected, which
exacerbates the first disadvantage. An additional test to determine whether a limit
had been exceeded would still be required.

For these reasons, a binary representation (B.2) appears to be the best choice here.

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 11

Notes

1.

There is a choice of bias. For single precision, for example, it could be either 1023
(matching IEEE 754) or 999+d-1, where d is the maximum number of digits in the
coefficient (so the minimum exponent appears as 0). IEEE 754 values have
precedent (they would already be available in hardware) and are currently preferred.

It is assumed that the exponent limit will be strictly checked on a boundary related
to decimal digits, because user definitions of decimal arithmetic naturally express
exponent limits and layouts in terms of the number of decimal digits supported in
a scientific notation. If implementations did not enforce an appropriate limit then
significant extra checking would need to be carried out in software (possibly after
every operation).

Chen-Ho or other 3-in-10 encodings are not proposed because the lengths of expo-
nents are small and the extra complexity is not justified; these encodings also suffer
the same second disadvantage as BCD encodings.

With BCD encoding, the sign would held separately, probably as a single sign bit.
In this case, an exponent of -0 should probably be in error.

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 12

Representation of the special values

C.1 | Reserved val- This scheme follows the precedent of existing binary

ues of exponent, | floating-point representations. It does not require extra
following IEEE | dedicated bits in the number. If the exponent used a binary
754 representation and was limited to a decimal range there
would be ample special values available.

C.2 | Other reserved | This scheme also uses special values of exponent, but uses

values of expo- | values different to those of IEEE 754. If the exponent used
nent a binary representation and was limited to a decimal range
the special values can all be encoded without requiring the
coefficient to be inspected.

C.3 | Separate bits This scheme is the simplest to decode. It would remove

either one or two bits from those available for the integer and
exponent (depending on whether sign bits were available for
indicating special values).

Discussion
This choice is needed for Goal3, and is partly determined by the answer to B:

If a binary representation for the exponent is chosen, then the maximum exponent
range can be achieved by either choice C.1 or C.2 (that is, no extra bits are used for
special values). It is likely that the exponent range will be related to a decimal digit
boundary, which would leave many encodings available for the special values (and
for future expansion, Goalb5).

If a BCD representation for the exponent is chosen, then it is likely that there will
be a multiple of four bits left over after the exponent and integer are laid out. These
give sufficent space for the special values (and signs), as needed for C.3.

With B.2 (binary with bias) chosen for the exponent format, C.1 or C.2 are preferred over

C.3.

At first sight, C.1 would seem to have the advantage over C.2, as it offers the possibility
of preserving detection hardware for the special values. However, there are several
arguments in favor of C.2:

1.

The coefficient does not have an “implied 1-bit”, so zero is a possible and legal value.
Therefore, there is no need to have a special value of exponent to represent zero
(indeed, it would be a disadvantage to have two unrelated mechanisms for repres-
enting zero).

An “all-bits-zero” value is quite likely to occur in practice, yet it would not be a valid
bit pattern. It therefore makes sense for this encoding to represent Signaling NaN,
in effect making it a signal indicating an uninitialized number.

If there is a special value at 0, and there are unused encodings adjacent to that
value, then it is useful to have the other two special values (NaN and Infinity) at
that “end” of the range, too. This makes it possible to check for the special cases in
software with a single test.

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 13

If all three special values are explicitly encoded by values of exponent then there is
no need to inspect the coefficient to distinguish between them.

Having the special values all at the low end of the exponent range simplifies both
documentation and software, as the special values then have the same numerical
value (0, 1, or 2) regardless of the size of the exponent.

For these reasons, a scheme meeting choice C.2 is preferred. The actual values suggested
are 0 for Signaling NaN (as already discussed) with Quiet NaN as the adjacent value (1)
and Infinity having the value 2.

Notes

1.

With choice C.2 and encodings as described, the coefficient would have no effect on
the value when the exponent indicated a special value. This would allow imple-
mentations to convey diagnostic information in the integer part if desired, as
recommended by IEEE 854.

If the representation of the exponent were twos-complement (B.1 rather than B.2)
then C.2 would still be preferred, but an “all-bits-zero” value would represent zero.
In this case, the three special values could be at either the most-positive or the
most-negative end of the range of exponent encodings.

If the choice were C.3 then one possible design would be as follows. Three bits from
the four available could be assigned: Integer sign, Exponent Sign, and Special. With
this scheme, if “Special” were 1 then the second bit could select Infinity/NaN, and
the first could then indicate sign (for Infinity) or signaling (for NaN).

The fourth bit could then be reserved for future expansion (Goal5). One use for this
(in conjunction with other bits) might be to indicate explicitly whether a number was
in single or double format (if the special bit were 0).

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 14

Ordering of the fields

D.1 | Exponent first: | This scheme follows the precedent of many existing binary
— sign/flags floating-point representations, including IEEE 754 and IBM
— exponent S/390.
— coefficient

D.2 | Coefficient first: | This scheme follows the precedent of the character repre-
— coefficient sentation of a floating-point number (e.g., 12.3E+3), and
— exponent some software representations (e.g., Borland real48).
— sign/flags

Discussion

For software, there is no strong preference for either choice.

For hardware, however, existing floating-point dataflows will already have many wires
from Floating-Point Registers that depend on the structure defined for IEEE 754 (with
the sign and exponent first). Having a different ordering and hence a conflicting wiring
pattern would strongly discourage hardware designers from implementing decimal
floating-point arithmetic.

The correct choice here would therefore seem to be D.1.

Notes

1. Itis assumed that if there is a sign bit it would precede any other flags, independent
of the choice of order.

2. If a decimal encoding is used for the exponent or coefficient then it is possible that
some bits may be unused. These “padding” bits would be placed after the exponent
so that the coefficient is right-aligned in the remainder of the encoding (this simpli-
fies conversions between different encodings).

3. Another possible position for the padding bits might be before or after the sign,
which would allow the possibility of self-defining lengths for encodings. However,
this loses the correspondence with IEEE 754 formats, and restricts the range of
representable numbers in the cases where no padding would have been needed.

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 15

Length of the exponent

Only one proposal was considered.

E.1 | Exponent This scheme simplifies hardware design of a combined
lengths should binary/decimal floating-point unit. It meets the constraints
match those of of IEEE 854. With a binary exponent representation (as in
IEEE 754 and B.1 and B.2) a greater exponent range than IEEE 754 is
IEEE 754R achieved as exponents are powers of 10.

guad

Discussion

IEEE 854 puts several constraints and recommendations on the exponent of any repre-
sentation (see the Notes below), and in particular requires that the exponent be longer
for a double precision number than for a single precision number. These constraints are
all met by using the IEEE 754 allocation of bits for sign and exponent (or the quad format
proposed for the IEEE 754R revision).

For a single precision number, reducing the exponent to two decimal digits would require
8 bits for the exponent, so (with the added sign bit) no additional integer digits would be
available if a BCD encoding were used for the integer.

For a double precision number, the exponent could be reduced to three digits to gain a
digit in the integer, but this would leave one bit unused and would also force the single
precision exponent down to two digits unnecessarily.

For these reasons, E.1 is the only proposal.

Notes

1. Itis assumed that given the result of this choice and the previous choices the length
of the coefficient is determined. That is, it will be the remainder of the number after
any exponent and necessary sign and flag bits are allocated.

2. IEEE 854 requires that the exponent range (E ., - E,,,) be greater than 5 times the
maximum precision in digits, and recommends that it be greater than 10 times the
precision.

This gives the minimum values for E__, shown in the second and third rows of the
following table. Plausible single precisions are shown to the left of the table, and
plausible double precisions are on the right.

Precision (digits) 10 |11 |12 | 13 | 14 24 | 25 [26 | 27 | 28 | 29
required E_, 26 |28 [31 |33 |36 61 |63 [66 | 68 | 71 | 73
preferable E 51 |56 [61 | 66 | 71 121| 126 131| 136| 141| 146
double E_, 415| 455| 495| 535| 575

The bottom row in the table above shows, for each of the plausible single precisions,
the recommended minimum E_,, for double precision. This must be greater than
or equal to 8 times the E_, for single precision, plus 7.

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 16

It is apparent from the table that if the latter constraint is satisfied then the pre-
ferred E,,, for double precision will also be satisfied.

IEEE 854 recommends that, for base 10 representations, the minimum adjusted
exponent E,,, should have the same absolute value as the maximum adjusted expo-
nent E ..

That is, E;, = -E,.« when the exponent is adjusted to represent the value of the

number in scientific notation. Balancing the range in this way minimizes overflows
and underflows when the inverse of a number is calculated.

Since the representation comprises an integer and exponent (instead of a fraction
and an exponent), the maximum exponent in the representation must be reduced so
that the effective exponent range is balanced. For example, if the coefficient were
13 digits and the exponent 3 digits (-999 through +999) then the range of positive
numbers would be from 1E-999 through 9.999999999999E+1011, which is unbal-
anced.

Instead, the exponent limits in the representation must be adjusted down by d-1
(where d is the number of digits in the coefficient).

For example, if the coefficient were 13 digits long and all nines in this case, the
allowed range of the exponent would be -1011 through +987, leading to a balanced
range of numbers with a guaranteed maximum exponent length when converted to
character form. That is, positive numbers with this exponent would range from
9.999999999999E-999 through 9.999999999999E+999.

Common floating-point formats use the following layouts:

Binary bits Decimal (approx.)
Total Fraction Exponent precision E max
32 23 8 7 107
64 52 11 16 10"%%
80 64 15 19 1079
128 112 15 34 107

The 32-bit and 64-bit layouts are the IEEE 754 single and double formats.
128-bit layout is the quad format being proposed for the current revision of IEEE

754 (IEEE 754R).

Draft — Version 0.72

Copyright (c) IBM Corporation 2000, 2002. All rights reserved.

The

17

Appendix B — Changes

This appendix documents changes since the first public draft of the proposals which led
to this specification (July 2000). It is not part of the specification.

Changes in Draft 0.60 (23 May 2001)

This specification is a formalization of the “strawman” proposal for decimal concrete
representations which was previously published as decconc.html.

No technical changes have been made to the proposal detailed in the most recent version
of that document (version 0.57, 22 April 2001); however, there have been numerous edi-
torial and formatting changes.

Changes in Draft 0.71 (19 March 2002)

= The rationale has been updated, especially for choice C (the representation of special
values).

= Minor editorial changes and clarifications have been made.

Changes in Draft 0.72 (5 July 2002)

Minor editorial changes have been made to reflect the change from a two-layered arith-
metic specification to a single document.

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 18

Index

1 coefficient 9
exponent 11
bi-quinary encoding 10

128 bit representation bias 3
double precision 3 choice of 11
binary
coefficient 9
9] exponent 11

Binary Coded Decimal 9
coefficient 9

64 bit representation exponent 11
single precision 3 bits
128 3
64 3
A ordering of 6

Borland real48 ordering 15

acknowledgements 1
ANSI standard
for REXX 7 C

IEEE 754-1985 1

IEEE 854-1987 7

X3.274-1996 7 Chen-Ho encoding 9, 10
arbitrary precision 2 COBOL requirements 9
arithmetic 2 coefficient 4

decimal 1,2 BCD 9

specification 1 binary 9

Chen-Ho encoded 9

Densely Packed Decimal encoded 9
B length of 4, 16

ordering of 15

. representation of 9
base-1000 encoding 10

value of 4
gésgll Number Class 10 concrete representation 2
Binary Coded Decimal 9 context information 2

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved.

D

decimal
arithmetic 1
specification 1
decimal arithmetic 2
decimal specification 3
Densely Packed Decimal encoding 4, 9,
10
double precision 3,5

E

ECMA standard 334 7
ECMA standard 335 7
encoding

Base/1 Number Class 10

BCD 9

bi-quinary 10

Chen-Ho 9

Densely Packed Decimal 4

excess-3 10

Gray 10

negadecimal 10

specification 1
encodings 2, 3

double precision 5

fields 3

order of bits 6

order of fields 6

other 6

single precision 5

value of 5
example encoding 6
exceptions 2
excess-3 encoding 10
exclusions 2
exponent 3

BCD 11

bias 3

biased 11

binary 11

IEEE layout 16

length of 16

ordering of 15

representation of 11

value of 3

Draft — Version 0.72

F

fields 3
ordering of 6, 15

G

Gray encoding 10

IBM S/390, ordering of bits 15
IEEE 754 exponents 16

IEEE standard 754-1985 1
IEEE standard 854-1987 7
inclusions 2

infinity 4, 13

ISO/IEC standard 1989:2002 9

L
length
of coefficient 4, 16
of exponent 16
M
mantissa
See coefficient
N
NaN
quiet 4
signaling 4

negadecimal encoding 10

Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 20

network byte order 6
Not-a-Number
See NaN
numbers
exponent of 3
numerical value, of encoding 5

O

objectives 2
ordering, of fields 15

P

Packed Decimal 9
padding 4
position of 15
polarity 3
precision
arbitrary 2
double 3
other recommendations 6
single 3

Q

guiet NaN 4, 13

R

rationale 7
recommended precisions 6
representation

of coefficient 9

of exponent 11
of special values 13

S

scale
See exponent
scope 2
sign 3
ordering of 15
signaling NaN 4, 13
significand
See coefficient
single precision 3,5
special values 3
choice of 13
representation of 13
specification 1,2, 3
subnormal numbers 4

T

TCP/IP byte order 6

U

uninitialized numbers 13

V

value
of coefficient 4
of encoding 5
of exponent 3

Draft — Version 0.72 Copyright (c) IBM Corporation 2000, 2002. All rights reserved. 21

