
The Rexx Language
(Background)

13th February 2012

Mike Cowlishaw

mfc@speleotrove.com

http://speleotrove.com/mfc/

Version 4.00

mailto:mfc@speleotrove.com
http://speleotrove.com/mfc/

Copyright © Mike Cowlishaw 1979, 2012.

Parts Copyright © Prentice Hall 1985, 1990.

All rights reserved.

Table of Contents

Background 5
What Kind of a Language is REXX? 6
Summary of the REXX Language 8
Fundamental Language Concepts 12
Design Principles 17
History 19

Index 21

Version 4.00 3

Background

This introductory part of the book is in five sections. The first two sections introduce the REXX
language, the next two sections describe the concepts and design principles that shaped it, and the final
section reviews the history of the language.

Version 4.00 Background 5

What Kind of a Language is REXX?
REXX is a procedural language that allows programs and algorithms to be written in a clear and
structured way. The primary design goal has been that it should be genuinely easy to use both by
computer professionals and by “casual” general users. A language that is designed to be easy to use
must be effective at manipulating the kinds of symbolic objects that people normally deal with: words,
numbers, names, and so on. Most of the features in REXX are included to make this kind of symbolic
manipulation easy. REXX is also designed to be independent of its supporting system software, but
with the capability of issuing both commands and conventional inter-language calls to its host
environment.

The REXX language covers several application areas that traditionally have been served by
fundamentally different types of programming language.

Personal
programming

REXX is a language that provides powerful character and arithmetical abilities in
a simple framework. You may write short programs with a minimum of overhead,
yet facilities exist to allow the writing of robust large programs. The language is
well adapted to interpretation, and is therefore rather suitable for many of the
applications for which languages such as BASIC are currently used.

REXX has proved to be an easy language to learn and to teach. As a first language
for students, it has the advantage of being a practical and structured programming
language which is also easy to use and to debug.

Tailoring user
commands

Command program interpreters are an important component of modern operating
systems. Nearly all operating systems include some form of Executive, Shell, or
Batch language. In many cases the language is so embedded into the operating
system that it is unlikely to be of use outside its primary environment, but there is
a clear trend towards providing command programming languages that are both
powerful and capable of more general usage. REXX carries this principle further
by being a language that is designed primarily for generality but also for suitability
as a command programming language.

Over the years, many REXX programs for tailoring operating systems have been
written – originally for the Conversational Monitor System component of the IBM
Virtual Machine/System Product, and later for other operating systems. Many of
these programs run to hundreds or thousands of lines, and some are in the tens of
thousands. One laboratory that uses REXX has over four million lines of code
written in REXX, with more than ten percent of the files on its main computer
system being REXX programs.

Macros Many applications are programmable by means of macros. In the data processing
world there is a different macro language for almost every type of application.
There are macro languages for editors, assemblers, interactive systems, text
processors, spreadsheets, databases, and of course for other languages. The work
of Stephenson1 and others has highlighted the similarities between these
applications, and the need for a common language. Since REXX is essentially a
character manipulation language, it can provide the macro language for all these
applications.

1 Stephenson, C. J. On the structure and control of commands. ACM Operating Systems Review (SIGOPS), Vol 7, No 4,
pp22-26 and 127-136 (1973).

6 Background Version 4.00

Macro languages often have unusual qualities and syntax that restrict their use to
skilled programmers. REXX has a more conventional syntax and is a flexible
language, and so makes it possible for the same jobs to be done in less time by less
skilled personnel.

Prototype
development

Interpreter implementations of REXX can be highly interactive, and permit rapid
program development. This productivity advantage, together with the ease of
interfacing REXX to system utilities for display and for data input and output,
makes the language very suitable for modelling applications and products. It has
also proved useful for setting up experimental systems for human factors studies.

The design of REXX is such that the same language can effectively and efficiently be used for many
different applications that previously required the learning of several languages.

Version 4.00 Background 7

Summary of the REXX Language
REXX is a language that is superficially similar to earlier languages. However, every aspect of the
language has been critically reviewed and usually differs from other languages in ways that make
REXX more suited to general users. It was possible to make these improvements because REXX was
designed as an entirely new language, without the requirement that it be compatible with any earlier
design.

The structure of a REXX program is extremely simple. This sample program, TOAST, is complete,
documented, and executable as it stands.

TOAST
/* This wishes you the best of health. */
say 'Cheers!'

TOAST consists of two lines: the first is a comment that describes the purpose of the program, and the
second is an instance of the SAY instruction. SAY simply displays the result of the expression
following it – in this case a literal string.

Of course, REXX can do more than just display a character string. Although the language is composed
of a small number of instructions and options, it is powerful. Where a function is not built-in it can be
added by using one of the defined mechanisms for external interfaces.

The rest of this section introduces most of the features of REXX. It is intended as a brief introduction
to the language to serve as a background for the rest of the book. Since many of the subtleties of
REXX are best appreciated with use, you are urged to use the language yourself.

REXX provides a conventional selection of control constructs. These include IF… THEN… ELSE for
simple conditional processing, SELECT… WHEN… OTHERWISE… END for selecting from a
number of alternatives, and several varieties of DO… END for grouping and repetition. These
constructs are similar to those of PL/I, but with several enhancements and simplifications. The DO
(looping) construct can be used to step a variable TO some limit, FOR a specified number of
iterations, and WHILE or UNTIL some condition is satisfied. DO FOREVER is also provided. Loop
execution may be modified by LEAVE and ITERATE instructions that significantly reduce the
complexity of many programs. No GOTO instruction is included, but a SIGNAL instruction is
provided for abnormal transfer of control, such as error exits and computed branching.

REXX expressions are general, in that any operator combinations may be used (provided, of course,
that the data values are valid for those operations). There are 9 arithmetic operators (including integer
division, remainder, and power operators), 3 concatenation operators, 12 comparative operators, and 4
logical operators. All the operators act upon strings of characters, which may be of any length
(typically limited only by the amount of storage available).

This sample program shows both expressions and a conditional instruction:
GREET
/* A short program to greet you. */
/* First display a prompt: */
say 'Please type your name and then press ENTER:'
parse pull answer /* Get the reply into ANSWER */

/* If nothing was typed, then use a fixed greeting, */
/* otherwise echo the name politely. */
if answer='' then say 'Hello Stranger!'
 else say 'Hello' answer'!'

8 Background Version 4.00

The expression on the last SAY (display) instruction concatenates the string 'Hello' to the value of
variable ANSWER with a blank in between them (the blank is here a valid operator, meaning
“concatenate with blank”). The string '!' is then directly concatenated to the result built up so far.
These simple and unobtrusive concatenation operators make it very easy to build up strings and
commands, and may be freely mixed with the other operators.

The layout of control constructs is very flexible. In the GREET example, for instance, the IF construct
could be laid out in a number of ways, according to personal preference. Line breaks can be added at
either side of the THEN (or following the ELSE), or multiple instructions can be placed on one line
with the aid of the semicolon separator.

In REXX, any string or symbol may be a number. Numbers are all “real” and may be specified in
exponential notation if desired. (An implementation may use appropriately efficient internal
representations, of course.) The arithmetic operations in REXX are designed for people rather for the
machine, so are decimal rather than binary and have a number of user-oriented features. The
operations are completely defined so that different implementations will always give the same results.

The NUMERIC instruction may be used to select the arbitrary precision of calculations (you may
calculate with one thousand significant digits, for example). The same instruction may also be used to
set the fuzz to be used for comparisons (that is, the number of significant digits of error permitted
when making a numerical comparison) and the exponential notation (scientific or engineering) that
REXX will use to present results.

Variables all hold strings of characters, and cannot have aliases under any circumstances. The simple
compound variable mechanism allows the use of arrays (many-dimensional) that have the property of
being indexed by arbitrary character strings. These are in effect content-addressable data structures,
which can also be used for building lists and trees. Groups of variables (arrays) with a common stem
to their name can be set, reset, or manipulated by references to that stem alone.

This example is a routine that removes all duplicate words from a string of words:
JUSTONE
/* This removes duplicate words from a string, and */
/* shows the use of a compound variable (HADWORD) */
/* which is indexed by arbitrary data (words). */
Justone: procedure /* make all variables private */
 parse arg wordlist /* get the list of words */
 hadword.=0 /* show all possible words as new */
 outlist='' /* initialize the output list */
 do while wordlist¬='' /* loop while we have data */
 /* split WORDLIST into first word and remainder */
 parse var wordlist word wordlist
 if hadword.word then iterate /* loop if had word */
 hadword.word=1 /* remember we have had this word */
 outlist=outlist word /* add word to output list */
 end
 return outlist /* finally return the result */

This example also shows some of the built-in string parsing available with the PARSE instruction.
This provides a fast and simple way of decomposing strings of characters using a primitive form of
pattern matching. A string may be split into parts using various forms of patterns, and then assigned to
variables by words or as a whole.

A variety of internal and external calling mechanisms are defined. The most primitive is the command

Version 4.00 Background 9

(which is quite similar to a message in the Smalltalk-802 system and in other object-oriented systems),
in which a clause that consists of just an expression is evaluated. The resulting string of characters is
passed to the currently selected external environment, which might be an operating system, an editor,
or any other functional object. This ability to send commands to different environments is a primary
concept of the language and is especially important when REXX is used as a “macro” language for
extending applications.

The REXX programmer can also invoke functions and subroutines. These may be internal to the
program, built-in (part of the language), or external. Within an internal routine, variables may be
shared with the caller, or protected by the PROCEDURE instruction (that is, be made local to the
routine). If protected, selected variables or groups of variables belonging to the caller may be exposed
to the routine for read or write access.

Certain types of exception handling are supported. A simple mechanism (associated with the CALL
and SIGNAL instructions) allows the trapping of run-time errors, halt conditions (external interrupts),
command errors (errors resulting from external commands), stream (input and output) errors, and the
use of uninitialized variables. Where appropriate it is possible to call a subroutine to handle the
exception, and error handling is supported by a useful set of built-in functions.

The INTERPRET instruction (expected to be supported by interpreters only) allows any string of
REXX instructions to be interpreted dynamically. It is useful for some kinds of interactive or
interpretive environments, and can be used to build the following SHOWME program – an almost
trivial “instant calculator”:

SHOWME
/* Simple calculator that evaluates REXX expressions. */
numeric digits 20 /* Work to 20 digits */
parse arg input /* Get expression into INPUT */
interpret 'Say' input /* Build and execute SAY */

This program first sets REXX arithmetic to work to 20 digits. It then assigns the first argument string
(perhaps typed by a user) to the variable INPUT. The final instruction evaluates the expression
following the keyword INTERPRET to build a SAY instruction which is then executed. If you were to
call this program with the argument “22/7” then the instruction “Say 22/7” would be built and
executed. This would therefore display the result

3.1428571428571428571

Input and output functions in REXX are defined only for simple character-based operations. Included
in the language are the concepts of named character streams (whose actual source or destination are
determined externally). These streams may be accessed on a character basis or on a line-by-line basis.
One input stream is linked with the concept of an external data queue that provides for limited formal
communication with external programs.

A rich set of built-in functions is included. These provide extensive string and word manipulations,
date and time extraction (in a variety of formats), conversions, bit manipulations, number
manipulation and formatting, state and error handling, input and output, and random number
generation.

The language defines an extensive tracing (debugging) mechanism, though it is recognized that some
implementations may be unable to support the whole package or may prefer to provide an alternative
process. The tracing options allow various subsets of instructions to be traced (Commands, Labels,
All, and so on), and also control the tracing of various levels of expression evaluation results

2 See, for example: Xerox Learning Research Group, The Smalltalk-80 system, Byte 6, No. 8, pp36-47 (August 1981).

10 Background Version 4.00

(intermediate calculation results, or just the final results). Furthermore, for a suitable implementation,
the language describes an interactive tracing option, in which the execution of the program may be
halted selectively. Once execution has paused, you may then type in any REXX instructions (to
display or alter variables, and so on), step to the next pause, or re-execute the last clause traced.

An example, longer than those shown above, of a REXX program is included as an appendix to this
book.

Version 4.00 Background 11

Fundamental Language Concepts
Language design is always subtly affected by unconscious biases and by historical precedent. To
minimize these effects a number of concepts were chosen and used as guidelines for the design of the
REXX language. The following list includes the major concepts that were consciously followed during
the design of REXX.

A complete treatment of some of these topics would fill another book, so unfortunately these
paragraphs can only be summaries of the extensive discussions that led to the current design.

Readability If there is one concept that has dominated the evolution of REXX syntax, it is
readability (used here in the sense of perceived legibility). Readability in this
sense is a rather subjective quality, but the general principle followed in REXX is
that the tokens which form a program can be written much as one might write
them in Western European languages (English, French, and so forth). Although the
semantics of REXX is, of course, more formal than that of a natural language,
REXX is lexically similar to normal text.

The structure of the syntax means that the language readily adapts itself to a
variety of programming styles and layouts. This helps satisfy user preferences and
allows a lexical familiarity that also increases readability. Good readability leads
to enhanced understandability, thus yielding fewer errors both while writing a
program and while reading it for information, debugging, or maintenance.
Important factors here are:

1. There is deliberate support throughout the language for upper and lower
case letters, both for processing data and for the program itself.

2. The essentially free format of the language (and the way blanks are treated
around tokens and so on) lets you lay out the program in the style that you
feel is the most readable.

3. Punctuation is required only when absolutely necessary to remove
ambiguity (though it may often be added according to personal preference,
so long as it is syntactically correct). This relatively tolerant syntax has
proved to be less frustrating than the syntax of languages such as Pascal.

4. Modern concepts of structured programming are available in REXX, and
can undoubtedly lead to programs that are easier to read than they might
otherwise be. The structured programming constructs also make REXX a
good language for teaching the concepts of good structure.

5. Loose binding between lines and program source ensure that even though
programs are affected by line ends, they are not irrevocably so. You may
spread a clause over several lines or put it on just one line. Clause separators
are optional (except where more than one clause is put on a line), again
letting you adjust the language to your own preferred style.

Natural data
typing

“Strong typing”, in which the values that a variable may take are tightly
constrained, first became a fashionable attribute for languages in the 1970s. I
believe that the greatest advantage of strong typing is for the interfaces between
program modules, where errors may be difficult to catch. Errors within modules
that would be detected by strong typing (and would not be detected from context)
are much rarer, certainly when compared with design errors, and in the majority of

12 Background Version 4.00

cases do not justify the added program complexity.

REXX, therefore, treats types as naturally as possible. The meaning of data
depends entirely on their usage. All values are defined in the form of the symbolic
notation (strings of characters) that a user would normally write to represent that
data. Since no internal or machine representation is exposed in the language, the
need for many data types is reduced. There are, for example, no fundamentally
different concepts of integer and real; there is just the single concept of number.
The results of all operations have a defined symbolic representation, so you can
always inspect values (for example, the intermediate results of an expression
evaluation). Numeric computations and all other operations are precisely defined,
and will therefore act consistently and predictably for every correct
implementation.

This language definition does not exclude the future addition of a data typing
mechanism for those applications that require it, though there seems to be little
call for this. The mechanism could perhaps be in the form of ASSERT-like
instructions that assign data type checking to variables during execution flow. An
optional restriction, similar to the existing trap for uninitialized variables, could be
defined to provide enforced assertion for all variables.

Emphasis on
symbolic
manipulation

The values that REXX manipulates are (from the user’s point of view, at least) in
the form of strings of characters. It is extremely desirable to be able to manage this
data as naturally as you would manipulate words on a page or in a text editor. The
language therefore has a rich set of character manipulation operators and
functions.

Concatenation, the most common string operation, is treated specially in REXX.
In addition to a conventional concatenate operator (“||”), there is a novel blank
operator that concatenates two data strings together with a blank in between.
Furthermore, if two syntactically distinct terms (such as a string and a variable
name) are abutted, then the data strings are concatenated directly. These operators
make it especially easy to build up complex character strings, and may at any time
be combined with the other operators available.

For example, the SAY instruction consists of the keyword SAY followed by any
expression. In this instance of the instruction, if the variable N has the value '6'
then

say n*100/50'%' ARE REJECTS

would display the string
12% ARE REJECTS

Concatenation has a lower priority than the arithmetic operators. The order of
evaluation of the expression is therefore first the multiplication, then the division,
then the direct concatenation, and finally the two “concatenate with blank”
operations.

Since the concatenation operators are distinct from the arithmetic operators, very
natural coercion (automatic conversion) between numbers and character strings is
possible and has become a highly valued feature of the language.

Dynamic scoping Most languages (especially those designed to be compiled) rely on static scoping,

Version 4.00 Background 13

where the physical position of an instruction in the program source may alter its
meaning. Languages that are interpreted (or that have advanced compilers)
generally have dynamic scoping. Here, the meaning of an instruction is only
affected by the instructions that have already been executed (rather than those that
precede or follow it in the program source).

REXX scoping is purely dynamic. This implies that it may be efficiently
interpreted because only minimal look-ahead is needed. It also implies that a
compiler is harder to implement, so the semantics includes restrictions that ease
the task of the compiler writer. Most importantly, though, it implies that in general
a person reading the program need only be aware of the program above the point
which is being studied. Not only does this aid comprehension, but it also makes
programming and maintenance easier when only a computer display terminal is
being used.

The GOTO instruction is a necessary casualty of dynamic scoping. In a truly
dynamically scoped language, a GOTO cannot be used as an error exit from a
loop. If it were, the loop would never become inactive.3 REXX instead provides an
“abnormal transfer of control” instruction, SIGNAL, that terminates all active
control structures when it is executed. Note that it is not just a synonym for GOTO
since it cannot be used to transfer control within a loop (for which alternative
instructions are provided).

Nothing to
declare

Consistent with the philosophy of simplicity, REXX provides no mechanism for
declaring variables. Variables may of course be documented and initialized at the
start of a program, and this covers the primary advantages of declarations. The
other, data typing, is discussed above.

Implicit declarations do take place during execution, but the only true declarations
in the REXX language are the markers (labels) that identify points in the program
that may be used as the targets of SIGNAL instructions or internal routine calls.

System
independence

The REXX language is independent of both system and hardware. REXX
programs, though, must be able to interact with their environment. Such
interactions necessarily have system dependent attributes. However, these system
dependencies are clearly bounded and the rest of the language has no such
dependencies. In some cases this leads to added expense in implementation (and in
language usage), but the advantages are obvious and well worth the penalties.

As an example, string-of-characters comparison is normally independent of
leading and trailing blanks. (The string “ Yes ” means the same as “Yes” in most
applications.) However, the influence of underlying hardware has subtly affected
this kind of decision, so that many languages only allow trailing blanks but not
leading blanks. By contrast, REXX permits both leading and trailing blanks during
general comparisons.

Limited span
syntactic units

The fundamental unit of syntax in the REXX language is the clause, which is a
piece of program text terminated by a semicolon (usually implied by the end of a
line). The span of syntactic units is therefore small, usually one line or less. This
means that the syntax parser in the language processor can rapidly detect and
locate errors, which in turn means that error messages can be both precise and

3 Some interpreted languages detect control jumping outside the body of the loop and terminate the loop if this occurs.
These languages are therefore relying on static scoping.

14 Background Version 4.00

concise.

It is difficult to provide good diagnostics for languages (such as Pascal and its
derivatives) that have large fundamental syntactic units. For these languages, a
small error can often have a major or distributed effect on the parser, which can
lead to multiple error messages or even misleading error messages.

Dealing with
reality

A computer language is a tool for use by real people to do real work. Any tool
must, above all, be reliable. In the case of a language this means that it should do
what the user expects. User expectations are generally based on prior experience,
including the use of various programming and natural languages, and on the
human ability to abstract and generalize.

It is difficult to define exactly how to meet user expectations, but it helps to ask
the question “Could there be a high astonishment factor associated with this
feature?”. If a feature, accidentally misused, gives apparently unpredictable
results, then it has a high astonishment factor and is therefore undesirable.

Another important attribute of a reliable software tool is consistency. A consistent
language is by definition predictable and is often elegant. The danger here is to
assume that because a rule is consistent and easily described, it is therefore simple
to understand. Unfortunately, some of the most elegant rules can lead to effects
that are completely alien to the intuition and expectations of a user who, after all,
is human.

Consistency applied for its own sake can easily lead to rules that are either too
restrictive or too powerful for general human use. During the design process, I
found that simple rules for REXX syntax quite often had to be rethought to make
the language a more usable tool.

REXX originally allowed almost all options on instructions to be variable (and
even the names of functions were variable), but many users fell into the pitfalls
that were the side-effects of this powerful generality. For example, the TRACE
instruction allows its options to be abbreviated to a single letter (as it needs to be
typed often during debugging sessions). Users therefore often used the instruction
“TRACE I”, but when I had been used as a variable (perhaps as a loop counter)
then this instruction could become “TRACE 10” – a correct but unexpected action.
The TRACE instruction was therefore changed to treat the symbol as a constant
(and the language became more complex as a consequence) to protect users
against such happenings; a VALUE option on TRACE allows variability for the
experienced user. There is a fine line to tread between concise (terse) syntax and
usability.

Be adaptable Wherever possible the language allows for extension of instructions and other
language constructs. For example, there is a useful set of common characters
available for future extensions, since only a restricted set is allowed for the names
of variables (symbols). Similarly, the rules for keyword recognition allow
instructions to be added whenever required without compromising the integrity of
existing programs that are written in the appropriate style. There are no globally
reserved words (though a few are reserved within the local context of a single
clause).

A language needs to be adaptable because it certainly will be used for applications

Version 4.00 Background 15

not foreseen by the designer. Although proven effective as a command
programming and personal language, REXX may (indeed, probably will) prove
inadequate in certain future applications. Room for expansion and change is
included to make the language more adaptable.

Keep the
language small

Every suggested addition to the language has been considered only if it would be
of use to a significant number of users. The intention has been to keep the
language as small as possible, so that users can rapidly grasp most of the language.
This means that:

• The language appears less formidable to the new user.

• Documentation is smaller and simpler.

• The experienced user can be aware of all the abilities of the language, and
so has the whole tool at his or her disposal to achieve results.

• There are few exceptions, special cases, or rarely used embellishments.

• The language is easier to implement.

No defined size or
shape limits

The language does not define limits on the size or shape of any of its tokens or
data (although there may be implementation restrictions). It does, however, define
the minimum requirements that must be satisfied by an implementation. Wherever
an implementation restriction has to be applied, it is recommended that it should
be of such a magnitude that few (if any) users will be affected.

Where implementation limits are necessary, the language encourages the
implementer to use familiar and memorable values for the limits. For example 250
is preferred to 255, 500 to 512, and so on. There is no longer any excuse for
forcing the artifacts of the binary system onto a population that uses only the
decimal system. Only a tiny minority of future programmers will need to deal with
base-two-derived number systems.

16 Background Version 4.00

Design Principles
A good philosophy for a language is of little use if there is not an effective process for testing the
resulting design and tuning it to the needs of its users. As REXX evolved, so too did a certain design
ethic; these principles are still followed today for REXX – other projects, too, are using similar
techniques.

The design process started rather conventionally – the language was first designed and documented;
this initial informal specification was then circulated to a number of appropriate reviewers. The
revised initial description then became the basis for the first specification and implementation.

From then on, other less common design principles were followed. The most significant was the
intense use of a communications network, but all three items in this list have had a considerable
influence on the evolution of REXX.

Communications Once an initial implementation was complete, the most important factor in the
development of REXX began to take effect. IBM has an internal network, known
as VNET, that at the time linked nearly 1000 mainframe computers in 40
countries. REXX rapidly spread throughout this network, so from the start many
hundreds of people were using the language. All the users, from temporary staff to
professional programmers, were able to provide immediate feedback to the
designer on their preferences, needs, and suggestions for changes. (At times it
seemed as though most of them did – at peak periods I was replying to an average
of 350 pieces of electronic mail each day.)

An informal language committee soon appeared spontaneously, communicating
entirely electronically, and the language discussions grew to be hundreds of
thousands of lines.

On occasions it became clear as time passed that incompatible changes to the
language were needed. Here the network was both a hindrance and a help. It was a
hindrance as its size meant that REXX was enjoying very wide usage and hence
many people had a heavy investment in existing programs. It was a help because it
was possible to communicate directly with the users to explain why the change
was necessary, and to provide aids to help and persuade people to change to the
new version of the language. The decision to make an incompatible change was
never taken lightly, but because changes could be made relatively easily the
language was able to evolve much further than would have been the case if only
upwards compatible extensions were considered.

Documentation
before
implementation

Every major section of the REXX language was documented (and circulated for
review) before implementation. The documentation was not in the form of a
functional specification, but was instead complete reference documentation that in
due course became part of this language definition. At the same time (before
implementation) sample programs were written to explore the usability of any
proposed new feature. This approach resulted in the following benefits:

• The majority of usability problems were discovered before they became
embedded in the language and before any implementation included them.

• Writing the documentation was found to be the most effective way of
spotting inconsistencies, ambiguities, or incompleteness in a design. (But
the documentation must itself be complete, to “final draft” standard.)

Version 4.00 Background 17

• I deliberately did not consider the implementation details until the
documentation was complete. This minimized the implementation’s
influence upon the language.

• Reference documentation written after implementation is likely to be
inaccurate or incomplete, since at that stage the author will know the
implementation too well to write an objective description.

The language
user is usually
right

User feedback was fundamental to the process of evolution of the REXX
language. Although users can occasionally be naïve in their suggestions, even
those suggestions which appeared to be shallow were considered carefully since
they often acted as pointers to deficiencies in the language or documentation. The
language has often been tuned to meet user expectations; some of the desirable
quirks of the language are a direct result of this necessary tuning. Much would
have remained unimproved if users had had to go though a formal suggestions
procedure instead of simply sending a piece of electronic mail directly to me. All
of this mail was reviewed some time after the initial correspondence in an effort to
perceive trends and generalities that might not have been apparent on a day-to-day
basis.

Many (if not most) of the good ideas embodied in the language came directly or
indirectly from suggestions made by users. It is impossible to overestimate the
value of the direct feedback from users that was available while REXX was being
designed.

18 Background Version 4.00

History
The REXX language (originally called “REX”) borrows from many earlier languages; PL/I, Algol, and
even APL have had their influences, as have several unpublished languages that I developed during the
1970s.

The language has developed in two distinct phases: the first being the rapid evolution of the language
in an essentially experimental environment, and the second being a more cautious series of
enhancements following the commercial availability of implementations of the language.

The first phase took place as a personal project of about four thousand hours during the years 1979
through 1982, at the IBM UK Laboratories near Winchester (England) and at the IBM T. J. Watson
Research Center in New York (USA). With this background REXX has an international flavour, with
roots in both the European and North American programming cultures.

In 1983, my own System/370 implementation became part of the Virtual Machine/System Product, as
the System Product Interpreter for the Conversational Monitor System (CMS). This implementation of
the language is described in the Reference Manual for that product.4 In 1985 the first edition of this
book was published, and soon after that the pioneer non-IBM implementation of REXX was
announced by the Mansfield Software Group: this implementation runs under the MS-DOS and PC-
DOS operating systems for Personal Computers. A number of other implementations have followed
from a variety of suppliers: one which perhaps best demonstrates the suitability of REXX for different
environments is a version for the Commodore Amiga computer.

The next milestone for REXX was its choice by IBM as the Procedures Language for the Systems
Application Architecture (SAA).5 This 1987 announcement implies a common REXX language across
all the SAA operating systems: VM, MVS, OS/400, and OS/2. 6 The language interpreter development
for all these environments is coordinated at the IBM Endicott Programming Laboratory, New York.

All the first implementations of REXX were interpreters: notable, then, was the announcement in 1989
of IBM’s CMS REXX Compiler, developed at the IBM Vienna Software Development Laboratory in
Austria with help from the IBM Scientific Centre at Haifa in Israel.

Inevitably the commercial exploitation of the language has required a stable language definition – the
radical changes in the language that were characteristic of its first years are no longer possible.
Fortunately, those early years of heavy use and rapid evolution probably mean that such radical
changes are no longer necessary: rather one would expect to see incremental changes and adjustments
consistent with the philosophy of keeping the language small and approachable. Even so it is not
impossible that major enhancements could be added to the base REXX language: over the years there
have been research proposals for both a REXX “systems programming language” and an object-
oriented REXX. REXX will doubtless continue to evolve as software technology itself evolves. I
hope, and expect, that even as it changes it will always remain true to its original goal.

4 IBM Virtual Machine/System Product: System Product Interpreter Reference. IBM Reference Manual, Order No.
SC24-5239, IBM (1983).

5 The Procedures Language for SAA comprises the REXX language, Double Byte Character Set support, and a series of
common interfaces to the language.

6 More formally: CMS in the VM/System Product or VM/Extended Architecture, TSO/E in the Enterprise Systems
Architecture/370, Operating System/400 for the Application System/400 (AS/400), and Operating System/2 Extended
Edition.

Version 4.00 Background 19

Index

A
Adaptability 15
Algol language 19
Amiga implementation 19
APL language 19
Application areas for REXX 6
AS/400 implementation 19
Astonishment factor 15

B
Background 5
BASIC language 6
Batch languages 6

C
CMS 6

implementation 19
Communications 17
Compiler

first for REXX 19
Consistency 15

D
Data

type checking 12
Datatyping 12
Dealing with reality 15
Declarations, why none in REXX 14
Design principles for REXX 17
Documentation before implementation 17
Dynamic scoping 13

E
Electronic mail 17
Examples

of programs 8-10
Executive languages 6

F
Feedback from users, value of 18

G
GOTO instruction, why not in REXX 14
GREET example program 8

H
History of REXX 19

I
Implementations of REXX 19
Incompatible changes 17
Introduction to REXX 8

J
JUSTONE example program 9

L
Language committee 17
Language concepts 12
Legibility, perceived 12
Limits of size 16

M
Macros 6
Mail, electronic 17
MS-DOS implementation 19
MVS implementation 19

N
Natural data typing 12
Network, electronic 17
Nothing to declare 14

O
OS/2 implementation 19
OS/400 implementation 19

P
PC-DOS implementation 19
Perceived legibility 12
Personal programming 6

Version 4.00 Index 21

Procedures Language 19
Programming style 12
Programs

examples 8-10
Prototype development 7
Prototyping

see Prototype development 7

Q
quot.PL/I language 19

R
Readability, of programs 12
Reality, dealing with 15
Reliability, of a language 15
REXX

background 5
compiler 19
design principles 17
history 19
implementations 19
language concepts 12
object-oriented 19
summary of the language 8

S
SAA

see Systems Application Architecture 19

Shell languages 6
SHOWME example program 10
Size

of language 16
see Length 16

Sparse arrays
see Compound variables 9

Strong typing 12
Structured programming concepts 12
Style, programming 12
Summary of the REXX language 8
Symbolic manipulation 13
Syntactic units 14
System independence 14
Systems Application Architecture 19

T
Tailoring user commands 6
TOAST example program 8
Tools, reliability of 15
TSO/E implementation 19

U
User is usually right 18

V
VM/CMS implementation 19
VNET 17

22 Index Version 4.00

	Background
	What Kind of a Language is REXX?
	Summary of the REXX Language
	Fundamental Language Concepts
	Design Principles
	History

	Index

