Preface

NetRexx is a new general-purpose programming language inspired by two
very different programming languages, Rexx and Java™. It is designed for
people, not computers. In this respect it follows Rexx closely, with many of
the concepts and most of the syntax taken directly from Rexx or its follow-on,
Object Rexx. From Java it derives static typing, binary arithmetic, the object
model, and exception handling.

The first implementation of NetRexx produces classes for the Java Virtual
Machine, and in so doing demonstrates the value of that concrete interface
between language and machine: NetRexx classes and Java classes are
entirely equivalent — NetRexx can use any Java class (and vice versa) and
inherits the portability and robustness of the Java environment.

When | started designing NetRexx, it was an experiment: there was no
guarantee that an ‘Object Rexx for the Java environment’ was viable. Critical
areas of the design — notably the syntax for referring to types, and automatic
conversions — took many iterations to get right, followed later by extensive
tuning in response to feedback from the early users of the language. The
result is a single language that not only provides the scripting capabilities
and decimal arithmetic of Rexx, but also seamlessly extends to large appli-
cation development with fast binary arithmetic.

More than a decade ago, | wrote that | hoped that future programming lan-
guages would improve on Rexx, and that Rexx was just a start in the direc-
tion of languages designed for people rather than computers. Although
disappointingly little research has been carried out in this area in the
interim, it was encouraging to discover that the philosophy behind the Rexx

Vii

Viii Preface

design can be applied so completely to a very different class of language, one
both object-oriented and statically typed.

I believe that NetRexx is indeed an improvement on Rexx. Although Rexx
has been widely used for ‘mission critical’, and sometimes quite enormous,
applications, its greatest strength was always in scripting and customizing
applications. NetRexx supports these tasks equally well (indeed, some Rexx
programs can be processed as NetRexx programs directly), and yet gains the
scalability, power, and robustness of Java.

I had thought that programmers would always need two languages: one
PL/I-like or C-like for high performance ‘low level' programming, and one
Rexx-like for prototyping, rapid development, and scripting. | now see that
the future is rosier: designing a single language for these traditionally dis-
parate uses is indeed possible. This truly makes programming easier than
it was before.

NetRexx on the World Wide Web

Many NetRexx resources can be found on the World Wide Web, including
on-line documentation, sample programs, and the NetRexx reference imple-
mentation. See: http://www2.hursley.ibm.com/netrexx

Acknowledgements

Much of NetRexx is based on earlier work, and | am indebted to the hundreds
of people who contributed to the development of Rexx, Object Rexx, and Java.

In recent years | have gained many insights from the deliberations of the
members of the X3J18 technical committee, which, under the remarkable
chairmanship of Brian Marks, led to the 1996 ANSI Standard for Rexx.
Many of the committee’s suggestions are incorporated in NetRexx.

Equally important have been the comments and feedback from the pioneering
users of NetRexx, and all those people who sent me comments on the lan-
guage either directly or in the NetRexx mailing list or forum. | would espe-
cially like to thank lan Brackenbury, Barry Feigenbaum, Davis Foulger,
Norio Furukawa, Dion Gillard, Martin Lafaix, Max Marsiglietti, and Trevor
Turton for their insightful comments and encouragement.

I also thank IBM; my appointment as an IBM Fellow made it possible to
make NetRexx a reality in months, rather than years.

Finally, this book has relied on old but trusted technology for its creation: its
GML markup was processed using macros originally written by Bob O'Hara,
and formatted using SCRIPT/VS, the IBM Document Composition Facility.
Geoff Bartlett provided critical advice on character sets and fonts.

Mike Cowlishaw

