LEXX—
A programmable
structured editor

by M. F. Cowlishaw

Many sophisticated and specialized editing
programs have been developed in recent years.
These editors help people manipulate data, but
the diversity complicates rather than simplifies
computer use. LEXX is an editing program that
can work with the syntax and structure of the
data it is presenting, yet is not restricted to just
one kind of data. It is used for editing programs,
documents, and other material and hence
provides a consistent environment for the user
regardless of the editing task. The new live
parsing technique used by LEXX means that it
can be programmed to handle a very wide
variety of structured data. The structure
information is, in turn, used to improve the
presentation of data (through color, fonts, and
formatting), which makes it easier for people to
deal with the text being edited.

Introduction

Broadly speaking, there are two types of editing programs
(editors) in wide use today. There are text editors that treat
data files as simply streams or lines of characters, and there
are editors which are aware of the syntax or semantics of the
data that are being edited. This latter type, which I shall call
structured editors, has attracted many designers over the last
twenty years [1, 2]. Structured editing is seen as one of the
best ways of improving the quality of the tools available to
computer users.

©Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 31 NO. | JANUARY 1987

Most structured editors are specialized to a particular
application. Some of these have selected a particular
programming language (such as LISP [3]) or a text-markup
language (such as GML, used by JANUS [4, 5]), and have
built an editor specifically optimized for that language.
Others (for example QUIDS [6] and Grif [7]) deal with more
ad hoc representations of documents.

The greatest disadvantage of these approaches, though, is
the natural resistance felt by computer users towards
learning a new editor for each kind of data that is to be
edited. General text editors such as EMACS [8] or XEDIT
[9] are popular because they can be used quite successfully
for most tasks, can offer a consistent environment from
session to session, and can be customized to improve
usability for specific kinds of data.

Even so, there are many advantages in using an editor that
has specialized knowledge of the data being edited. The
editor can improve the presentation of the data in a variety
of ways, using appropriate formatting, color cuing, and fonts;
it can provide checking of the syntax of the data, or even of
the semantics; and it can provide specialized mechanisms to
simplify or speed up the entry of data or of modifications.
All of these improve the usability of the tool. At present,
however, even quite minor enhancements to presentation
often require changes to the editor itself [10].

The conflict, then, is between the goal of providing an
editor which is general enough to handle most of a user’s
editing tasks, and that of providing an editor which is
specialized for each task (or, at least, the major tasks). A
separate editor for each major task does not seem to be a
good long-term solution; even if all the editors were designed
to a consistent specification, the duplication of effort and
likelihood of confusing differences would be considerable.

Instead, a new kind of general-purpose editor is required,
one that supports the concept of structured data in its

M. F. COWLISHAW

73

74

primitives and yet is not specialized to a particular kind of
data. The primitives and presentation capabilities need to be
powerful enough to make it relatively easy to provide the
editor with the appropriate specialized knowledge for a wide
variety of types of information.

LEXX is a new editor that has been designed to this
specification. (The name LEXX was chosen because the
editor was originally developed as a tool for lexicographers
during the author’s secondment to the New Oxford English
Dictionary project at Oxford University Press.) It achieves its
goals by amalgamating a number of concepts and
philosophies, of which the most novel is the /ive parsing
mechanism. This technique has proved to be crucial in
allowing the design of a general-purpose editor that can edit
both documentation and programs while making evident the
structure of the data being edited.

This paper discusses the more important design
considerations, with emphasis on the aspects that most affect
the user of the editor. The examples, reproduced with the
kind permission of Oxford University Press, are taken from
one of the most interesting projects for which LEXX is used,
the New Oxford English Dictionary. It should be
remembered, however, that the editor is not specialized
towards handling text; it can just as easily be, and has been,
customized for editing programs—LEXX is used for editing
its own source, macros, and on-line documentation.

Structured editor design

The design of an editor is a complicated task, with many
requirements and objectives that sometimes conflict. The
goal (for any editor that is not just experimental) is that it
should be a usable and effective tool for interacting with
data. If any interactive program does not meet the
requirements of the people that are to use it, it has failed to
achieve this goal.

For a general-purpose editor such as LEXX, many of the
common requirements (such as the ability to move through
the data, the ability to search for strings, reliability, and so
on) are well known and will not be discussed here. The more
complicated requirements, including those that apply
specifically to structured editing, are listed below.

Data classification A file that is to be edited usually
contains several different types, or classes, of data. In a
document there may be text and markup; in a program there
will be a different set of classes, such as variables, keywords,
and commentary. The class of a piece of data must be
maintained by the editor since different treatment and
presentation are often required for different classes.

Data structure The editor needs to be able to formalize the
relationships among objects in the data. Documents and
programs have structure, often expressed in terms of nesting
or depth, and this structure must be understood by the

M. F. COWLISHAW

editor so that it can be properly presented to the user.
Classification and structure analysis of data correspond to
syntactic and semantic analysis of language.

Data presentation The data being managed by the editor
have to be displayed to the person using the tool. Since
structured data have attributes other than just character
shapes, it must be possible to display these attributes.
Formatting, coloring, the use of different fonts, and
highlighting may be appropriate, according to the capabilities
of the display terminal being used.

Data modification Although the program may be used
simply to view data, for it to be an editor its design must
also provide for the modification of the data. In the case of a
structured editor, any modifications must properly update
not only the raw characters of the data but also the
underlying classification and structure.

Programmability The editor must be flexible, easily
programmable, and easily customizable. Human preferences
and expectations vary so much that it is extremely unlikely
that any single configuration will satisfy all users.

Performance To be usable, a tool must respond quickly to
users’ demands and requests. The mechanisms provided by
the editor should not be inherently inefficient.

The remainder of this section discusses (and illustrates,
where appropriate) each of these requirements in more
detail, and describes the approaches taken in the LEXX
design to meet these objectives.

Data classification
When LEXX is first requested to edit a file, it loads the file
from a filing system or database in the usual way. A typical
file, presented without any further processing, is shown in
Figure 1. In this figure (an example of an entry in the Oxford
English Dictionary, using an early form of markup), the
entry has been marked up with tags. These tags are delimited
with the characters “(” and “)”, in the SGML [11] notation,
and describe the structure of the entry; this particular entry
is composed of a headword section ((hwsec)) and a single
sense ((sen)). Each of these parts is in turn composed of
other parts, which, in this example, form a rather simple
hierarchy. However, when first loaded, the tags are not very
easy to read and the structure is not apparent. It is not easy
to edit a file in this format; try, for example, to read the
quotation dated 1642, or to count the number of quotations.
Once the file has been loaded, LEXX determines the type
of the file (usually from part of the name, called the filetype-
or extension), and then calls the appropriate command for
processing this type of file. The command used is called a
parser and is specific to a particular variety of data. One

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

purpose of the parser is to analyze the data which were
loaded and then identify and classify related pieces of those
data.

For example, when the marked-up text document shown
in Figure [is first loaded, it is simply a series of lines of
characters. These lines include both the text content of the
document and the tags that describe its structure and
formatting. The parser will analyze the document and
determine which characters are part of markup and which
are part of the text. Each sequence of characters that belong
to a particular class is assigned to an element, the atomic
unit which LEXX uses to hold data. (Characters are
collected together into elements mainly for reasons of
efficiency, but the concept of elements also simplifies many
operations on the data.)

Each element, therefore, holds characters that all belong to
the same class (or classes, since sequences of characters may
belong to more than one class). This classification can then
be used by the editor to help control which data are to be
displayed, which data may be modified, and so on. The
parser defines and names the classes used; the editor simply
provides general primitives for naming and manipulating the
classes.

The ultimate purpose of classification is to help the user
read and edit the data; if the different classes can be
distinguished visually when the data are displayed, a
document can be much easier to read and to edit. The parser
can achieve this by associating with each element a symbolic
font. These fonts are then represented by different typefaces
and colors on the display. An initial mapping of each
symbolic font to a standard typeface and color is usually set
by the parser, but this may be changed at any time by the
user or a program according to preference and the typefaces
available.

In Figure 2, markup is being displayed in a default
typeface, colored turquoise; text is shown in a variety of
green typefaces which indicate the font style that would be
used for each segment of text if it were to be formatted for
printing. The bold font is also emphasized in yellow to
further enhance visibility; it is now very much easier to find
the quotation dated 1642. The parser has also associated
some simple formatting information with each element (for
example, to indicate whether it should start a new line or be
preceded by a blank line). This formatting also helps make
the data more readable and easy to comprehend.

The parser is dynamically loaded when first required (as
all LEXX commands may be). Since it is not a fixed part of
the editor, skilled users and application developers may
develop their own parsers (or modify existing ones). Parsers
are usually written in a compilable language, though it is
possible to use an interpreted language; the latter is
especially appropriate for trying out new parsing ideas.

If a file is loaded but no appropriate parser is available, the
default settings (as seen in Figure 1) permit the file to be

IBM J. RES. DEVELOP. VOL. 31 NO. | JANUARY 1987

A marked-up document loaded as a plain file.

n bungler: 't

bongler

Wdat) 1858

The document after classification and font assignment.

edited simply as a series of lines of data. Therefore, even if
no parser exists for a particular type of data, LEXX is still a
useful and effective text editor.

Data structure

As well as classifying the data in a file and adding
information to improve readability, the parser may
determine the structure of the data. Each element can have a
depth indication associated with it, showing its depth within
the structure of the file. This depth can be an absolute value
(for example, in a book, the book as a whole might be at

M. F. COWLISHAW

76

bungler: 1

n f
i 'hongler f ¢ fobunglar</vf

The document with structure shown by indention.

depth I, and each chapter might be at a deeper level, perhaps
3). The depth can also be relative to the preceding element.
(A list would normally be defined as a depth lower than its
surroundings; nested lists then naturally show increasing
depths.)

After the parsing, then, the document held by LEXX can
have a structure, or hierarchy, determined from the content
of the data. Like the classes and formatting information, the
structure of the document can affect both the display of the
data and the actions of commands that will work on the
data. Use of the hierarchical structure model supported by
LEXX is optional, since it is not appropriate for some kinds
of data.

As with classification, there is little point in adding
structural information to a document if this information
cannot be conveyed to the user when required. This is
achieved by automatic indention. Unless requested
otherwise, LEXX will display each element with indention
proportional to its depth in the structure of the document.
The effect of this can be seen in Figure 3 (which is the same
as Figure 2 except for the indention). As for programming
languages, sensible use of indention significantly aids
comprehension of the structure of a document.

The embodiment of the structural information is worth
noting. Instead of mirroring the structure in the organization
of the data (by linking the elements in a conventional tree
structure, as in ED3 [12] and STET [13]), the hierarchy is
simply recorded as changes of depth associated with each
element. The elements themselves form a simple linked list
[14]. This considerably simplifies the traversal of the data
during common requests such as context searches, and also
makes manipulation of the hierarchy easier.

M. F. COWLISHAW

Data presentation

The usability of an editor is determined to a large extent by
its presentation of the data being edited, and it is in the
presentation of data that structured editors can really excel.
LEXX knows the class of each data element and it knows
the hierarchy of the elements; as has already been seen, this
information can be applied very effectively to help the user.
Beyond this initial presentation, flexibility of display styles
can further enhance usability. In LEXX there are many
optional variations, including the following:

e The structure of the data is normally indicated by
indenting data elements according to their depth in the
hierarchy. This indention can be increased or decreased to
either emphasize or hide the structural information.

e The content of the display can be varied according to the
structure. Inclusion of elements can be made contingent
on their being higher than a certain depth, or lower than a
certain depth, or within certain depth bounds, etc. This is
especially useful for data and languages that have a formal
hierarchical grammar.

e The content of the display can be varied according to the
classification of the data. Elements of selected classes can
be included in (or excluded from) the display as required.
For example, if all the elements in a document that form
chapter or section headings are assigned the class
HEADER, then requesting a display of only HEADER
class elements will show the table of contents of the
document. Note that this table of contents is not extracted
from the document in any sense, but is composed from
the actual header elements in the document (which,
therefore, can be edited directly). Similarly, depending on
the classification carried out by the parser, the display can
show just footnotes, or indexing entries, or whatever
combination may be required.

e The effects of the formatting information associated with
each element can be controlled. For example, the blank
lines added for readability may be switched off to get more
data on a small screen. Surprisingly, even on small
(24-line) screens, people usually prefer to keep the blank
lines; in this case, the improved readability seems to be
more important than the quantity of data on the screen.

e Each element has associated with it an optional fonts
string, which consists of a single character corresponding
to each character of the content (data) in the element. The
font character symbolizes a particular font, and the user
may select the color and character set (typeface) used for
each symbolic font, according to the capabilities of the
display being used. Thus the font “I” might represent
“Italics,” and be displayed in an italic typeface, in red.

The fonts are initially assigned by the parser, usually on
an element-by-element basis, and often correspond closely
to the classes of data (though they are independent of the
classes). The fonts associated with any element may be

IBM J. RES. DEVELOP. VOL. 31 NO. | JANUARY 1987

changed easily, as may the mapping of the fonts to visual
cues. Individual characters (such as punctuation) within an
element can therefore be assigned different fonts, for
emphasis. Careful use of fonts in this manner can further
improve the transfer of information from the display to
the user.

This partial list gives an idea of the flexibility of the LEXX
display processor. It is in fact a formatter, much like a
document formatter, which has to select the elements for
display according to a number of criteria, then format the
data to fit the screen or display window available. Each
element is formatted according to its associated rules for
formatting and its content (data and font information). This
is based on the analysis of the data by the parser and may
therefore follow or ignore the original layout of the data, as
appropriate.

Formatting must be done every time the data are to be
displayed to the user (for example, while scrolling up or
down a document)—considerably more often than required
by document formatters. Efficiency is therefore an important
consideration, and the current formatter makes considerable
use of “look-aside” information in order to achieve good
performance, especially when the format of a section of a
document is heavily dependent on previous elements.

It is important to appreciate that the formatting provided
by the editor does not (in the case of text documents)
necessarily mimic the appearance of a final or printed
document. Rather, the display normally indicates the general
structure and content of the data—just as markup in a
document is descriptive of the document rather than of a
particular final formatting.

The flexibility of the display options means that the data
being displayed may be selected as appropriate for the
editing task. In a marked-up document, both the markup
and the data can be shown for convenience of editing.
During proofreading, the markup can be excluded from the
display to give an uncluttered view, and presentation
elements (added by the parser purely to improve the
appearance of the displayed file) can be included. Such a
view of the dictionary entry shown in earlier figures can be
seen in Figure 4. This view is produced by the same
formatter, and at the same speed, as the earlier views; a
narrower width is used to give an idea of the usual
presentation style of this material.

Note that only four parameters have been changed from
Figure 3. The width has been reduced, elements have been
flowed together, markup has been excluded, and
presentation elements (such as the parentheses around the
pronunciation) have been included.

It can even be useful to display only the markup,
without the intervening data. Styles may be evolved to suit
the application—the choice is made by the user, not the
editor.

IBM J. RES. DEVELOP. VOL. 31 NO. | JANUARY 1987

hungler

bungler

bongler. ~ bunglar

1826
1858

bungler-like
1663

1613

The document shown without markup, in galley style.

Data modification

As shown in the previous section, the data presented to the
user for modification can be abstracted from the original
document and arranged in quite sophisticated ways. Within
the data area of the display, the characters visible are selected
from some subset of the elements of the document. Each
line of the screen may contain several elements, or an
element can be formatted so that it is spread over more than
one line.

Once the data have been displayed, the user can (in
normal operation) over-type, insert, or delete characters
anywhere in the data. Elements of different classes may be
altered, and the characters corresponding to whole elements
of data may be deleted with a single keystroke. Every change
made to the display not only must update the corresponding
characters in the data structure, but also must cause
appropriate changes to the other attributes of the data: the
classes, structure, formatting information, and fonts.

At first sight, it seems that it is necessary to keep track of
every character displayed in order to interpret its correlation
to the elements in the data structure. Furthermore, the rules
for updating the other attributes have to be formalized and
communicated to the editor.

The first of these two tasks is expensive but possible. The
second, however, is not possible, since the editor designer
cannot be aware of all possible rules that might apply to data
that will be edited. Restricting the editor to data that can be
described by a simple set of rules or tables can be quite
successful (as in Wood’s Z [15] and Hall’s ZEDSE*), but
cannot provide for the general case and hence fails to
produce a general-purpose editor.

Fortunately, there is a solution. As already described, the
editor enlists the aid of a specialized parser when the file is
first loaded. Since the file was provided by some external
agency (it may have been edited by another editor, for

*S. T. Hall, IBM UK Laboratories Ltd., Hursley Park, Winchester, England; personal
communication, 1986. 77

M. F. COWLISHAW

78

example), the parser must be clever enough to classify and
deduce the structure of any raw sequence of characters. All
that is needed, then, is for the editor to provide a mechanism
to invoke the very same parser to reparse any data that are
changed by the user. This technique makes a true general-
purpose structured editor a possibility, and is called /ive
parsing. It also has the advantage that the editor does not
have to “see” every keystroke made by the user, and hence
makes practical the use of displays that provide hardware
editing features.

Live parsing is used for any change made to the data, not
just those made by typing on the screen. As the editor
processes each change, the element affected is added to a list
of changed elements. At appropriate intervals (not after
every change, since some changes may be interrelated, but
before the screen is displayed), live parsing is triggered, and
the parser is called once for every element on the list. The
sole difference from the initial call of the parser is that only
the local context (often just the element itself) around the
changed element needs to be processed, not the whole file.

For example, if the name of the author of the 1642
quotation (Milton) were changed on the display shown in
Figure 3, the parser would be called with the changed
element identified by the “current position” information. It
would then determine the local context that might be
affected by the change, which in this case is the complete
quotation (bounded by the (quot) and (/quot) tags). [Here
the parser can determine the context simply from the
structural (depth) information, but parsers for other kinds of
data might need to inspect the elements more closely or
make use of static information.]

When the local context has been determined, all the
elements in that local context are parsed. This takes place as
though they had been concatenated to form raw text as
originally loaded from a file system. As each syntactic token
(tag or text) is identified, it is classified and its structure is
determined, and the new element, classification, and
structure replace the old. In practice, of course, the parser
will find that most of the elements in the local context are
already correct, and so few real changes or data movements
are required.

The parser may make any changes to the document and
associated state information, without restrictions. It may
alter, insert, or delete elements, and may change the fonts
and attributes of elements. Changes made by the parser are
not noted and reparsed, but they are recorded and hence can
be “undone.”

The size of a parser is very much dependent on the
complexity and regularity of the data to be parsed. As an
indication, the parser for dictionary entries has about 700
lines of PL/I [16] that are directly involved in parsing,
together with a further 300 lines of initialization.
(Initialization consists mainly in processing tables of special
symbols and tags needed for the New Oxford English

M. F. COWLISHAW

Dictionary—new tags are introduced by modifying a tag
table rather than the parser itself.) Writing a parser is a
significant piece of work but is a task very much smaller
than writing an entire editor.

Programmability

All editors designed for serious use are programmable and
customizable to some extent, and LEXX is not an exception
to this rule. Programmability in LEXX is based on its
command language: Every primitive operation is defined as
a command, and every command can be issued either
manually or from a program. All state information that can
be altered can be queried on command and passed to a
program, and much other information (such as the
characteristics of the current display device) is also available
through the command interface.

In the current implementation, commands are generally
written in PL/I or REXX [17]. The first of these languages
(PL/I) is compiled, and the object code is dynamically
included in the editor when the command is first invoked.
The second is interpreted; commands written in this
language are by convention called editor macros, though
conceptually there is no difference between macros and PL/I
commands.

The kernel of the editor is a very small program that
initializes certain permanent data areas mainly concerned
with the operating environment. It then calls the first
command, named “SHELL,” which is the command
dispatcher. (The default SHELL command is written in
PL/I, but users can write their own in either of the languages
mentioned.) From this point, execution of the editor is
entirely command-driven and programmable. Commands
are available to build (format) data for display, display them,
and wait for user input; these primitives allow a certain
amount of asynchronous operation—a command may
continue to carry out background processing while awaiting
user input. Since the formatter is itself a subroutine of a
command, different or more sophisticated formatting than is
provided in the current formatter (such as formatting that
displays the data as they would appear if printed or
otherwise processed) could be provided by replacing this
command. The formatter is complex, so this would be a
harder task than writing a typical parser.

Some of the functions of the parser commands calling for
live parsing have already been described, but since parsers
are themselves programmable commands, they make
possible completely new kinds of interactive data-dependent
processing. (The practical limit is that amount of processing
which would start to increase editor response time
significantly.) A parser for text documentation can carry out
spelling or grammar checking, and suggest indexing entries;
a parser for a programming language might warn of
dangerous constructs or of poor coding and commentary
standards, or expand macros as they are entered; or the data

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

could be in the form of a spreadsheet, with the parser
carrying out the calculations and updating the display as
changes are made. In the last case, one would have a
spreadsheet that had the full power of the REXX language
and the editor directly available.

Performance

A crucial requirement for any interactive software tool is
good performance. Since this depends to a great extent on
the hardware being used, absolute figures will not be
meaningful to every reader. As a guide, however, a response
measurement made as [typed this paragraph showed an
elapsed time of just under a quarter of a second. That is, it
took less than a quarter of a second from the time a change
was made to the time the data had been parsed and updated,
a new screen formatted, and the new display fully written on
the screen. (This was on a busy, shared IBM 4381 processor
running the VM/CMS operating system, and using a 3279
display with a variety of fonts and colors.)

More interesting than the total time (which is quite
adequate, though not as fast as might be wished) is an
analysis of the processing and time delays involved. Exactly
half of the elapsed time went in system overheads (almost
wholly delay in the display controller). Of the remainder,
which is central processor (CPU) time, the percentages spent
in each part of the operation were

35% in formatting the text for display and building the
rest of the screen (status information, etc.).

29% in sending the formatted screen to the display
device.

18% in reading changes from the display and correlating
them with the data structure.

19% in live parsing.

Of course, the actual sizes of these four tasks will vary
considerably according to the hardware and software
environment, the data being edited, and the complexity of
the changes made. Even so, it is notable that both the
formatting and the live parsing require resources that are
comparable to those needed simply to drive the display
terminal. It was anticipated that the interactive formatting
would be very expensive, but in practice careful
implementation has been able to keep this within acceptable
limits. The live parsing, too, is less of a load on the processor
than was expected, even though no special care has been
taken over implementation in this case.

The performance of the editor does not deteriorate with
large documents, except that, of course, the time needed to
load the document from the file system and to parse it
initially is proportional to its length.

Conclusions and further directions
LEXX is currently implemented as a “mainframe” editor,
but its concepts, command language, and design are

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

intended to be general. It would be especially interesting to
implement LEXX for more personal workstations. The live
parsing technique has proved to be sufficiently general that
parsers for a number of programming languages have been
written, together with parsers for several kinds of
documentation markup. Future work will probably
investigate the use of the editor for other kinds of data, while
at the same time enhancing its capabilities when it is used
without a specific parser.

Using LEXX as an everyday editor has confirmed that
editing can be made much easier for users if full advantage is
taken of the implied attributes of the data being edited. For
many years it has been commonplace to show the structure
of a program using indention, but it is rare for this technique
to be used for documentation. Similarly, the use of color and
fonts can greatly enhance the readability of data presented
for editing, but few editing programs provide support for
both these means of emphasis.

LEXX is an editor that can be programmed not only to
understand and present the structure of data, but also to
display those data in a variety of styles and colors in order to
best match the data to the user and to the task being
performed. The live parsing mechanism means that the
changes made by the user can trigger other changes to the
data or attributes of the data in a powerful and general way.
The result is a programmable editor that can be customized
to suit the data, the task, and—most important of all—the
user.

References and note

1. A. van Dam and D. E. Rice, “On-Line Text Editing: A Survey,”
ACM Comput. Surv. 3, No. 3, 93-114 (1971).

2. D. C. Englebart and W. K. English, “A Research Center for
Augmenting Human Intellect,” Proceedings of the AFIPS 1968
Fall Joint Computer Conference, 1968, pp. 395-410.

3. C. N. Alberga, A. L. Brown, G. B. Leeman, Jr., M. Mikelsons,
and M. N. Wegman, “A Program Development Tool,” /BM J.
Res. Develop. 28, No. 1, 60-73 (January 1984).

4. C. F. Goldfarb, “A Generalized Approach to Document
Markup,” Proceedings of the ACM SIGPLAN SIGOA
Symposium on Text Manipulation, SIGPLAN Notices 16, No. 6,
68-73 (June 1981).

5. D. D. Chamberlin, O. P. Bertrand, M. J. Goodfellow,

J. C. King, D. R. Slutz, S. J. P. Todd, and B. W. Wade,
“JANUS: An Interactive Document Formatter Based on
Declarative Tags,” IBM Syst. J. 21, No. 3, 250-271 (1982).

6. G. F. Coulouris, I. Durham, J. R. Hutchinson, M. H. Patel,

T. Reeves, and D. G. Winderbank, “The Design and
Implementation of an Interactive Document Editor,”
Software—Pract. & Exper. 6, 271-279 (1976).

7. V. Quint and 1. Vatton, “Grif: An Interactive System for
Structured Document Manipulation,” Proceedings of the
International Conference on Text Processing and Document
Manipulation, Cambridge University Press, UK, 1986, pp.
200-213.

8. R. M. Stallman, “EMACS: The Extensible, Customizable
Self-Documenting Display Editor,” Proceedings of the ACM
SIGPLAN SIGOA Symposium on Text Manipulation,
SIGPLAN Notices 16, No. 6, 147-156 (June 1981).

9. Virtual Machine/System Product: System Product Editor
Command and Macro Reference, Order No. SC24-5221-2, 1983;
available through IBM branch offices.

M. F. COWLISHAW

80

10. A. Lippman, W. Bender, G. Solomon, and M. Saito, “Color
Word Processing,” IEEE Comput. Graph. & Appl. 5, No. 6,
41-46 (1985).

11. ISO—Information Processing—Text and Office Systems
“Standard Generalized Markup Language (SGML),” Drafi
International Standard, ISO/DIS 8879 (1985); available from
the American National Standards Institute, 1430 Broadway,
New York, NY 10018.

12. O. Stromfors and L. Jonesjo, “The Implementation and
Experiences of a Structure-Oriented Text Editor,” Proceedings of
the ACM SIGPLAN SIGOA Symposium on Text Manipulation,
SIGPLAN Notices 16, No. 6, 22-27 (June 1981).

13. M. F. Cowlishaw, “Improvements in Text Processing Systems,”
UK Patent Application GB-2-043-311-A, Patent Office, London,
1980.

14. The current implementation holds documents in storage for
editing and is therefore limited by the amount of virtual
memory available.

15. S. R. Wood, “Z—The 95% Program Editor,” Proceedings of the
ACM SIGPLAN SIGOA Symposium on Text Manipulation,
SIGPLAN Notices 16, No. 6, 1-7 (June 1981).

16. OS and DOS PL/I Language Reference Manual, Order No.
GC26-3977, 1984; available through IBM branch offices.

17. M. F. Cowlishaw, The REXX Language, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1985.

Received June 18, 1986, accepted for publication July 13,
1986

M. F. COWLISHAW

Mike Cowlishaw IBM UK Ltd., Sheridan House, 41-43 Jewry
Street, Winchester, Hants, SO23 8RY, England. Mr. Cowlishaw
joined IBM’s UK Laboratory at Hursley in 1974, having received a
B.Sc. in electronic engineering from the University of Birmingham,
England, in 1974. Until 1980 he worked on the design of the
hardware and software of display test equipment; simultaneously, he
pursued various aspects of the human-machine interface, including
implementation of the STET Structured Editing Tool (an editor
which gives a treelike structure to programs or documentation),
several compilers and assemblers, and the REXX programming
language. In 1980 Mr. Cowlishaw took an assignment at the IBM
T. J. Watson Research Center, Yorktown Heights, New York, to
work on a text display with real-time formatting and also on the
specification of new facilities for IBM’s interactive operating systems.
In 1982 he moved to the IBM UK Scientific Centre in Winchester,
England, to work on color perception and the modeling of brain
mechanisms. He joined the IBM UK Technical Strategy Unit in the
Research Projects Department in 1986. He has recently been on
secondment to the Oxford University Press, working on the New
Oxford English Dictionary project. Mr. Cowlishaw has received two
IBM Outstanding Technical Achievement Awards [one for the
conception, design, development, support, and marketing of the
REX (former name of REXX) language and the REX Exec
Processor, and the other for the development of LEXX], as well as
an IBM Invention Achievement Award.

IBM J. RES. DEVELOP. VOL. 31 NO. | JANUARY 1987

