
General Decimal Arithmetic
Testcases

24th March 2009

Mike Cowlishaw

IBM Fellow
IBM UK Laboratories

mfc@uk.ibm.com

Version 2.44

mailto:mfc@uk.ibm.com

Copyright © IBM Corporation 2000, 2009. All rights reserved.

Table of Contents

Introduction 5

Testcase file format 7
Testcase syntax 7
Directives 11
Operations 14
Conditions 16

Notes 17
Testcase groups and coverage 17
Testcase history 20

Appendix A – Changes 21

Index 25

Version 2.44 3

Introduction

This document describes testcases designed for testing implementations of the general purpose
floating-point arithmetic defined in the General Decimal Arithmetic Specification.1

The testcases are intended to be both language-independent and representation-independent.2 They
comprise individually identified tests, each describing a single operation and its expected results. The
tests are grouped into files to make it easier to test a new implementation incrementally, and are
available at the General Decimal Arithmetic page, in dectest.zip (extended arithmetic) and
dectest0.zip (subset arithmetic).

The testcase files should be considered experimental (or “beta”), and may contain errors. They are
offered on an as-is basis. In particular, even passing all the tests does not guarantee that an
implementation complies with any Standard or specification, because the tests are not exhaustive.

Comments on this draft and the testcases are encouraged. Please send any comments, suggestions, and
corrections to the author, Mike Cowlishaw (mfc@uk.ibm.com).

For further background details, including specifications in various formats and related decimal
arithmetic links, please see the material at the General Decimal Arithmetic web site.

Appendix A (see page 21) summarizes the changes to this document since the first public draft.

Acknowledgements

The author is indebted to Aahz, Paul-Georges Crismer, and Tim Peters for their contributions to this
document. In addition, many people have contributed directly or indirectly to the testcases
themselves; special thanks are due to Brian Marks for his meticulous investigations into different
implementations of the base arithmetic.

1 See http://speleotrove.com/decimal/decarith.html
2 A mechanism is provided which permits specific representations to be encoded, however.

Version 2.44 Introduction 5

http://speleotrove.com/decimal/decarith.html

Testcase file format

This section describes the format of the testcase files. These are distributed as plain text files with a
file name that identifies the group of tests contained in the file and a file extension (if appropriate) of
.decTest. File names will not have embedded blanks.

The files are encoded using one byte per character, using 7-bit ASCII encoding. These may be
converted to Unicode by treating them as UTF-8-encoded files or by directly converting each 7-bit
character to Unicode by prefixing nine 0 bits.

Testcase syntax
Each testcase file consists of one or more lines (the line delimiter mechanism may vary, depending on
the operating system). Within each line, control characters (those with encodings in the range 0
through 31) are not used.

Each line is treated as a sequence of tokens, delimited by the start of the line, spaces between tokens, or
(after the final token) the end of the line. There may be more than one space between tokens, and
spaces may also appear before the first token on a line and after the last token on a line. Tokens may
also be quoted, to include spaces (see below).

If the first two characters of a token are two hyphens (--) the token indicates the start of a comment.
The two-hyphen sequence and any characters that follow it, up to the end of the line on which the
sequence occurs, are ignored (that is, they are treated as commentary).

The lines in a file may be:
empty Lines with no characters, or only space characters. These lines are treated as commentary

and are ignored.
comments Lines whose first token starts a comment. These are also ignored.
directives Lines which are used to control the testcase environment in some way, for example to

change the working precision. These lines have two tokens and are of the form:

 keyword: value

where the case-independent keyword describes the purpose of the directive, and the value
is a parameter associated with the directive. The possible keywords and their values are
described below (see page 11).

tests Lines which describe a specific test. These lines have at least five tokens, and are of the
form:

 id operation operand1 operand2 operand3 -> result conditions

Version 2.44 Testcase file format 7

where the named tokens are as follows:

id A short name which identifies the test. It is case-independent and unique in
the file. In the current testcases it comprises three or four alphabetic
characters followed by three or four digits (for example, divx101).

operation A case-independent keyword which describes the operation (see page 14) to
be carried out for this test (for example, divide).

operand1 The first (or only) operand required for the operation. The token may be
quoted (see below). If it is not quoted then its value is the sequence of
characters comprising the token, taken exactly as written.

If the value of a token includes an octothorpe character (#, also called the
hash or pound sign), the operand is a specific format-dependent
representation, as described below.

Otherwise, the value of the token is treated as a string, which should be
converted to a number using the to-number conversion of the arithmetic
specification.

operand2 An optional second operand, if required for the operation. If present, it has
the same syntax and follows the same rules as operand1.

operand3 An optional third operand, if required for the operation. If present, it has
the same syntax and follows the same rules as operand1 and there must be
an operand2.

result This defines the result of carrying out the operation on the operand or
operands, and may also be quoted. It will either be the string form of a
valid number or a format-dependent representation (see below), or the
question mark character (?) which indicates that the result is undefined.
The latter is only used in tests for the X3.274 subset of the specification, for
error results.

conditions Zero or more tokens each of which is the case-independent name of a
condition (see page 16) set by the operation. If no condition is set then no
condition tokens will be present.

Quoted tokens

Any operand or result token may be quoted. That is, it may begin with a delimiter which is a single or
double quote character and it is then only ended by a matching quote (which must be present and on
the same line). A quote which matches the starting quote may be included inside a quoted operand by
doubling up the quote; in this case it does not end the token.

The content of the quoted token (after the delimiters have been removed and any doubled delimiter
quotes have been reduced to a single instance) forms the value of the token. The value may contain
any 7-bit ASCII characters (other than the control characters, whose encodings are in the range 0
through 31), including spaces or the comment start sequence.

If the value of an operand token is not a valid number or format-dependent representation (that is, its
syntax is not valid) then the token must be quoted.3 Result tokens must always have correct syntax.

3 This rule allows future extensions to the syntax of tests.

8 Testcase file format Version 2.44

Processing of a test case line

When the value of an operand token is converted to a number before use, using the to-number
conversion, it is subject to the values set by directives (see page 11), except that the precision
directive is only used when the operation (see page 14) is toSci, toEng, or apply. For other
operations, sufficient precision is used so that rounding of the operand is avoided.4 The conversion of
operands to numbers may set flags, such as the Rounded or Inexact flags, if the “perfect” value of the
operand is outside the bounds set by the directives.

In contrast, the value of a result token is effectively converted to a number without constraints – no
flags will be set by this process. The “perfect” result number is compared with the result of the
operation on the operand(s) and must match exactly if the test is to succeed.

Note that in all cases the actual processing by a test case interpreter need only act as though the steps
described here are carried out.

Format-dependent representations

When the value of an operand or result token includes the octothorpe character (#, also called the hash
or pound sign), the operand or result is derived from or creates a specific decimal format.

The operand or result token must have one of the following syntaxes:

• The octothorpe alone. For example, "#".

In this case, the token is a null reference, which can only be used as an operand. Null references
are used for testing the behavior of implementations which can be passed numbers by reference,
where a null reference would be an error. If this concept is not supported then tests containing
null references should be skipped.

• The octothorpe followed by exactly 8, 16, or 32 hexadecimal digits, where a hexadecimal digit
is one of the characters ’0’ through ’9’ or ’a’ through ’f’ (in uppercase or lowercase). For
example, "#A23003D0".

In this case, the token is an explicit hexadecimal representation in one of the decimal floating-
point formats (decimal16, decimal32, or decimal128, respectively) described in the IEEE 754
standard.

When used as an operand, these formats are decoded without loss or constraint and are then
subject to the values set by directives (see page 11), except that the precision directive is only
used when the operation (see page 14) is toSci, toEng, or apply. For other operations,
sufficient precision is used so that rounding of the operand is avoided (these are the same rules
as are applied to operands supplied as numerical strings).

When used as a result, these formats imply encoding of the result of the operation into the given
format. This may modify or clamp the result to fit the format, giving a different result than if
the result had been expressed as a string and possibly raising new conditions. Note that the
toSci and toEng operations cannot be used if the result is format-dependent, as these require
specific string results (use apply instead).

• One of the strings "32#", "64#", or "128#", immediately followed by a numeric string. For
example, "32#-7.50".

4 This rule allows the testing of rounding in the toSci, toEng, and apply operations, and also permits the testing of
the lost_digits condition in the other operations.

Version 2.44 Testcase file format 9

In this case, the token forms an alternative method of specifying a number in a particular
format, with the characters before the # selecting the target format.

For an operand, the numeric string is first converted to a number and is then encoded in the
selected format (this may cause rounding or other conditions, and these conditions will be set as
usual). The resulting encoding is then used as though it had been specified in explicit
hexadecimal form, as described above.

For a result, the numeric string is again first converted to a number and is then encoded in the
selected format (this may cause rounding or other conditions, but no conditions will be set by
this process). The resulting encoding is then used as though it had been specified as the result in
explicit hexadecimal form, as described above.

Example

Here is an example of a small testcase file, comprising some commentary, directives which set the
version and context, and some tests.

-- simple.decTest
-- Testcase for some simple operations.
Version: 2.44

Precision: 9
Rounding: half_up
MaxExponent: 999
MinExponent: -999

simp001 add 1 1 -> 2 -- can we get this right?
simp002 multiply 2 2 -> 4
simp003 divide 1 3 -> 0.333333333 Inexact Rounded
simp004 divide 1 0 -> NaN Division_by_zero
simp005 toSci '1..2' -> NaN Conversion_syntax

Note: Tokens and lines do not have a defined length limit, however the current testcases are limited to
a maximum token length of 1050 characters and a maximum line length of 4000 characters.

10 Testcase file format Version 2.44

Directives
Directives are used to control the testcase environment in some way. Each has a keyword (which is
immediately followed by a colon) and a value.

The first four directives are required; no tests can be run without these settings being specified (that is,
there is no default value for these settings). Once set, each setting remains in force until a new
directive with the same keyword is encountered; the setting is then replaced by the new value.

Keyword Value
precision An unsigned positive integer. Its value is used to set the precision in the context

for the following tests.
If the setting exceeds the maximum precision that can be handled by an
implementation then following tests should be skipped (until the setting is
suitably reduced or the end of the file is reached).

rounding A word which describes the rounding mode to set in the context for the following
tests. It is case-independent and will be one of:
 ceiling
 down
 floor
 half_down
 half_even
 half_up
 up
 05up

If an unsupported rounding mode is set, then following tests should be skipped
(until the setting is changed to a supported mode or the end of the file is
reached).

maxexponent An unsigned integer which may be zero or positive. This value describes the
value of the adjusted exponent beyond which overflow will be raised. The
following tests will indicate an overflow condition (see page 16) if the adjusted
exponent exceeds this setting.
Implementations, in general, will have fixed maximum exponent limits, which
may not match the setting in the testcase:

• If the setting of maxexponent is larger than can be handled, then
following tests should be skipped (until the setting is suitably reduced or
the end of the file is reached).

• If the setting of maxexponent is smaller than can be enforced, then
following tests which indicate an overflow condition should be skipped
(until the setting is suitably changed or the end of the file is reached).

Version 2.44 Testcase file format 11

Keyword Value
minexponent An unsigned integer which may be zero or negative. This value describes the

value of the adjusted exponent below which underflow will be raised. The
following tests will indicate an underflow condition (see page 16) if the
adjusted exponent is less than this setting. (Note that if extended is set, smaller
exponents down to minexponent - precision + 1 are possible because subnormal
values are allowed.)
Implementations, in general, will have fixed minimum exponent limits, which
may not match the setting in the testcase:

• If the setting of minexponent is smaller than can be handled, then
following tests should be skipped (until the setting is suitably reduced or
the end of the file is reached).

• If the setting of minexponent is smaller than can be enforced, then
following tests which indicate an underflow or subnormal condition
should be skipped (until the setting is suitably changed or the end of the
file is reached).

The next three directives are optional:

Keyword Value
version A number which describes the version of the testcases which follow. This may

be up to five digits, or four digits with an embedded decimal point. For
example:
 version: 2.40

The meaning of the version number is not defined, except that later versions of
testcases should have a larger version number.

extended Either 0 or 1. This directive indicates the level of arithmetic needed for the
following tests.
When set to 1 (the default), numbers whose value is zero may have non-zero
sign and exponent, operations may result in subnormal values, extra checking is
performed on the length of operands, and the results of operations are defined
after errors (they may be 0, infinite, or NaN values). For example:
 extended: 1 -- enable extended values
 div0 divide -1 0 -> -Infinity Division_by_zero

When set to 0, only the X3.274 subset of the arithmetic is required, where the
sign of a zero value result is always 0, subnormal values raise underflow, and
some other differences are expected.

If an implementation does not support testcases as selected by the extended
setting then following tests should be skipped (until the extended setting is
changed to an acceptable value or the end of the file is reached).

12 Testcase file format Version 2.44

Keyword Value
clamp Either 0 or 1. This directive indicates whether explicit exponent clamping is

applied.
If 0 (the default), the only clamping applies to zero results, which will have
maximum and minimum exponents as described under maxexponent and
minexponent above.

If 1, a restricted exponent range (as used in certain concrete representations)
applies: the maximum exponent is reduced to maxexponent - precision + 1. This
will clamp zeros at a lower value and may cause the coefficient and exponent of
certain normal values to be “folded down”.

If an implementation does not support testcases with the clamp option as
selected by the clamp setting then following tests should be skipped (until the
clamp setting is changed to an acceptable value or the end of the file is
reached).

The final directive allows testcase groups (files) to themselves be grouped together in a hierarchy:

Keyword Value
dectest A word specifying the file name (without extension) of another testcase file to

be processed at this point. For example, a testcase which simply runs the
testcases for the three division operations might read:
 -- divides.decTest -- Test divisions
 dectest: divide
 dectest: divideint
 dectest: remainder

Note that this directive is not an “include”; the current settings are not inherited
by the file to be processed – that file must be processed in exactly the same way
as if it were the only testcase being run.

Version 2.44 Testcase file format 13

Operations
Each test line identifies an operation by means of a case-independent keyword, which is always the
second token of the line. The following operations are defined.

Keyword Definition
abs If the operand is negative, this is minus; otherwise it is plus.
add The two operands are added together using add.
and The two logical operands are anded together using and.
apply This operation applies the constraints of the directives to the operand; the

result must then match in precision and value.
canonical The operand is converted to an canonical encoding, if necessary (the result

should be a format-dependent representation).
class The class of the operand is tested; the result is one of the strings defined for

class.
compare The operands are compared using compare.
comparesig The operands are compared using compare-signal.
comparetotal The operands are compared using compare-total.
comparetotalmag The operands are compared using compare-total-magnitude.
copy The operand is copied to the result.
copyabs The operand is copied to the result using copy-abs.
copynegate The operand is copied to the result using copy-negate.
copysign The first operand is copied to the result with the sign of the second, using

copy-sign.
divide The first operand is divided by the second, using divide.
divideint The first operand is divided by the second to give an integer result, using

divide-integer.
exp e is raised to the power of the operand, using exp.
fma The three operands are combined, using fma.
invert The logical operand is inverted using invert.
ln, log10 The logarithm of the operand in base e or 10 is computed, using ln or

log10.
logb The exponent of the operand is extracted, using logb.
max, min The operands are compared using compare and the larger or smaller,

respectively, is returned.
maxmag, minmag The magnitudes of the operands are compared using compare and the

larger or smaller, respectively, is returned.
minus The operand is subtracted from zero, using minus.
multiply The operands are multiplied together using multiply.
nextminus The next value less than the operand is computed using next-minus.
nextplus The next value greater than the operand is computed using next-plus.
nexttoward The next value to the first operand in the direction of the second is

computed using next-toward.

14 Testcase file format Version 2.44

Keyword Definition
or The two logical operands are ored together using or.
plus The operand is added to zero, using plus.
power The first operand is raised to power of the second, using power.
quantize The first operand is quantized so that its exponent is set to that of the second

operand, using quantize.
reduce Trailing zeros are removed, using reduce (previously named normalize).
remainder The first operand (the dividend) is divided by the second (the divisor) to give

a remainder after integer division, using remainder.
remaindernear The first operand (the dividend) is divided by the second (the divisor) to give

a remainder after division to the nearest integer, using remainder-near
(IEEE remainder).

rescale The first operand is rescaled so that its exponent is set to the value of the
second operand, using rescale.

rotate The coefficient of the first operand is rotated by the number of digits given
by the second operand, using rotate.

samequantum The exponents of the operands are compared for equality.
scaleb The exponent of the first operand is adjusted by a value given by the second

operand, using scaleb.
shift The coefficient of the first operand is shifted by the number of digits given

by the second operand, using shift.
squareroot The square root of the operand is computed, using square-root.
subtract The second operand is subtracted from the first, using subtract.
toEng The operand is converted to a string using to-engineering-string.
tointegral The operand removes any fraction, using round-to-integral-value.
tointegralx The operand removes any fraction, using round-to-integral-exact; it may

result in Inexact.
toSci The operand is converted to a string using to-scientific-string.
trim Insignificant fractional zeros are removed, using trim.
xor The two logical operands are exclusive-ored together using xor.

Version 2.44 Testcase file format 15

Conditions
Each test may cause zero or more conditions to be raised. The case-independent names of these
conditions (if any) are listed following the result token of each test.

Only those conditions occuring during the tested operation are listed unless the operation is toSci,
toEng, or apply. For these operations, conditions raised during the conversion of the operand are
included (this allows the testing of conversions in both directions).

The following condition names are defined, together with the name used for it in the arithmetic
specification and the IEEE 754 exception which would be raised by the condition.

Condition Specification name IEEE exception
clamped Clamped (no equivalent)
conversion_syntax Conversion syntax Invalid operation
division_by_zero Division by zero Division by zero
division_impossible Division impossible Invalid operation
division_undefined Division undefined Invalid operation
inexact Inexact Inexact
insufficient_storage Insufficient storage Invalid operation
invalid_context Invalid context Invalid operation
invalid_operation Invalid operation Invalid operation
lost_digits Lost digits (no equivalent)
overflow Overflow Overflow
rounded Rounded (no equivalent)
subnormal Subnormal (no equivalent)
underflow Underflow Underflow

Notes:
1. The condition names are simply the names from the arithmetic specification, with spaces

changed to underscores so each forms a single token.

2. The inexact, rounded, and subnormal conditions are included in the testcases, even when
extended is 0, to aid analysis and debugging. (Underflow implies all three.)

The rounded condition indicates that an operand or the result of a test has had one or more zero
or non-zero digits removed by rounding. That is, the number of digits in the coefficient of the
result is fewer than in the coefficient of the “ideal” result.

In contrast, the inexact condition indicates only that non-zero trailing digits were removed
(that is, the result would compare unequal to the ideal result).

3. Similarly, the clamped condition, which can only occur if extended is 1, is included. This
indicates when a zero is clamped to the maximum or minimum adjusted or representable
exponent, or when a normal number is “folded-down” in order to fit in a specific encoding.

4. The lost_digits condition can only occur if extended is 0.

5. The insufficient_storage condition is not a predictable condition and so will not appear
in any testcases. It is listed here as a reminder that some implementations could raise this
condition for some tests.

16 Testcase file format Version 2.44

Notes

This section describes the testcases included in the testcase package (dectest.zip), and their
history.

Testcase groups and coverage
The following groups cover the base arithmetic operations of the specification:

Group Description
abs Tests the abs operation.
add Tests the add operation, including both positive and negative numbers for

the operands.
compare,
comparesig

Test the compare and comparesig operations.

divide Tests the divide operation.
divideint Tests the divideint operation.
fma Tests the fma (fused multiply-add) operation.
max, maxmag Test the max and maxmag operations.
min, minmag Test the min and minmag operations.
minus Tests the minus operation.
multiply Tests the multiply operation.
quantize Tests the quantize operation.
reduce Tests the reduce operation (previously named normalize).
remainder Tests the remainder operation.
remaindernear Tests the remaindernear (IEEE remainder) operation.
rescale Tests the rescale operation.
subtract Tests the subtract operation.
tointegral,
tointegralx

Test the round-to-integral operations.

Version 2.44 Notes 17

The following groups cover the mathematical functions of the specification:

Group Description
exp Tests the exp function.
ln Tests the ln function.
log10 Tests the log10 function.
power, powersqrt Test the power operation.
squareroot Tests the squareroot function.

The following groups cover the logical and shifting functions of the specification:

Group Description
and Tests the and (digit-wise logical and) operation.
invert Tests the invert (digit-wise logical invert) operation.
or Tests the or (digit-wise logical or) operation.
rotate Tests the rotate (coefficient rotation) operation.
shift Tests the shift (coefficient shifts) operation.
xor Tests the xor (digit-wise logical xor) operation.

The following groups cover miscellaneous functions of the specification:

Group Description
class Tests the class (classification) operation.
comparetotal,
comparetotmag

Test the total-ordering operations.

copy, copyabs,
copynegate,
copysign

Test the quiet copy and sign-manipulation operations.

logb Tests the logb (exponent extract) operation.
nextminus,
nextplus,
nexttoward

Test the select-next-value operations.

samequantum Tests the samequantum operation.
scaleb Tests the scaleb (exponent manipulation) operation.

18 Notes Version 2.44

The following groups cover more general aspects of the operations:

Group Description
base Tests the base string conversions (toSci and toEng operations), including

strings which are not valid numbers.
inexact Tests edge cases for the inexact and rounded conditions, using a selection

of operations.
randoms 4000 randomly-generated tests, using the add, compare, divide,

divideint, multiply, power, remainder, and subtract operations.
rounding Tests the different rounding modes. Each rounding mode is tested for each of

the major operations.
trim Tests the trim operation.

Three testcase groups collect together a number of testcase groups for each of the three main decimal
encodings for decimal arithmetic:5

Group Description
decSingle Includes testcase groups for the “decimal32” decimal data type (7 digits,

maximum exponent +96). The groups included in decSingle all have
names starting with the letters ds, followed by a word corresponding to the
operations they test.

decDouble Includes testcase groups for the “decimal64” decimal data type (16 digits,
maximum exponent +384). The groups included in decDouble all have
names starting with the letters dd, followed by a word corresponding to the
operations they test.

decQuad Includes testcase groups for the “decimal128” decimal data type (34 digits,
maximum exponent +6144). The groups included in decQuad all have
names starting with the letters dq, followed by a word corresponding to the
operations they test.

Four testcase groups are designed for testing the boundary conditions and encodings associated with
the concrete representations for decimal arithmetic and a further group includes random tests for
boundary conditions around 32 digits:

Group Description
clamp Tests clamped operations, independent of format.
dsEncode Tests for the “decimal32” decimal data type (7 digits, maximum exponent

+96); included in decSingle.
ddEncode Tests for the “decimal64” decimal data type (16 digits, maximum exponent

+384); included in decDouble.
dqEncode Tests for the “decimal128” decimal data type (34 digits, maximum exponent

+6144); included in decQuad.
randombound32 2400 tests, as in the randoms group, with precisions 31 through 33 and

maximum exponent +9999.

All the above groups appear with the name as shown above – in these groups testcases are run with the
extended directive set to 1; these testcases are in the file dectest.zip

5 See http://speleotrove.com/decimal/decbits.html

Version 2.44 Notes 19

http://speleotrove.com/decimal/decbits.html

A subset of these groups also appears with the name as shown above with the suffix 0 – in these
groups the extended directive is set to 0; these testcases are in the file dectest0.zip

This separation makes it easier to test the full or subset arithmetics separately.

The final testcase simply runs all the testcases described above:

Group Description
testall Runs all the testcases described above (over 64,000 in all).

(Again, a testall0 group runs the tests where the extended directive is set to 0. This adds a further
16,300 testcases.)

Coverage of these testcases is (of course) not exhaustive. Instead, the testcases assure the basic
operations of the arithmetic and concentrate on “difficult cases”; those tests where the result may not
be immediately obvious, or where some implementation in the past has shown a problem.

Testcase history
The tests in the testcase groups are derived from a number of sources, and are intended to cover the
paths and edge cases found in:

• Testcases and examples used by the X3 (now NCITS) J18 committee (1991+) which developed
the ANSI standard X3.274-1996.6

• IBM VM/CMS S/370 Rexx implementation testcases (1981+)

• IBM Vienna Laboratory Rexx compiler testcases (1988+)

• NetRexx testcases (1996+)

• DiagBigDecimal – the open source testcases for the com.ibm.math.BigDecimal Java class
(1997+)

• The decNumber reference implementation testcase library (2000+)

• New testcases, e.g., for the typical concrete representations’ edge cases, for extended values,
operations, and logical and mathematical functions, and the random tests.

The authoritative sources for how the underlying operations should work are:

• for the subset decimal arithmetic: ANSI X3.274-1996 (plus errata, 1997–2001)7

• for conversions, conditions, and rounding modes, and the precise definition of result
coefficients: the General Decimal Arithmetic Specification.8

• for floating-point arithmetic, including subnormal and special values (but excluding the
deviations noted in the General Decimal Arithmetic Specification): IEEE standard 754-2008,9

Please send suggestions for improvements to the testcases to the author, Mike Cowlishaw.

6 American National Standard for Information Technology – Programming Language REXX, X3.274-1996, American
National Standards Institute, New York, 1996.

7 ibid.
8 See http://speleotrove.com/decimal/decarith.html
9 IEEE Std 754-2008 – IEEE Standard for Floating-Point Arithmetic, The Institute of Electrical and Electronics Engineers,

Inc., New York, 2008.

20 Notes Version 2.44

http://speleotrove.com/decimal/decarith.html

Appendix A – Changes

This appendix lists changes since the first public draft of this document.

Changes in Draft 0.18 (13 July 2001)

• Two new testcase groups, randomDouble and randomSingle, have been added.

• Minor corrections and clarifications have been made.

Changes in Draft 0.20 (25 September 2001)

• The rounding testcase group now includes tests for the ceiling and floor modes.

Changes in Version 1.00 (21 November 2001)

The specification has been enhanced to include tests for extended value arithmetic (including
subnormal values and values such as NaN and Infinity). In particular:

• A new version directive has been added to allow a formal version number to be indicated.

• A new extended directive controls the extended-values setting.

• Operands and results with extended values are now possible.

• A new operation, integer (round-to-integer) has been added.

• Three new testcase groups, extend, integer, and randomBound32, have been added.

Changes in Version 1.02 (30 November 2001)

• A new operation, remaindernear (IEEE remainder) has been added, together with a testcase
group of the same name.

• Some underflow and overflow exception results and conditions have been corrected.

Changes in Version 1.03 (20 March 2002)

• Three new operations and testcase groups (abs, max, and min) have been added.

• Corrected the description of the maxexponent directive; a value of zero is permitted.

Version 2.44 Appendix A – Changes 21

Changes in Version 2.01 (3 July 2002)

This version marks a major update of the testcases to match the new combined arithmetic
specification. The underlying syntax, etc., of the testcases is unchanged, but specific changes include:

• Each testcase group has been split into two groups, one with the extended directive set to 1 and
the other with it set to 0.

• One new operation and (pair of) testcase groups (trim) has been added.

• The extended testcase group has been removed and its testcases incorporated into other
groups.

Changes in Version 2.06 (1 September 2002)

This version incorporates updates to testcases for subnormal numbers (previous testcases included
subnormals which were more precise than allowed by IEEE 754), and also adds testcases for rounding
to-number conversions. The subnormal condition has been added, and subnormal numbers may be
rounded and/or inexact (in the latter case, underflow is raised).

In this document:

• The subnormal condition has been added.

• The conversion underflow and conversion overflow conditions have been removed
(these conditions now raise underflow or overflow, respectively).

• The operand to the toSci and toEng operations is now subject to rounding.

• Minor clarifications have been added.

Changes in Version 2.09 (8 October 2002)

• The normalize and squareroot operations and testcase groups have been added.

• Extended tests now admit unrounded long operands without input rounding; the Lost_digits
condition can therefore only occur when extended is 0.

• Three cases in remaindernear.decTest which should have produced Division_impossible,
but did not, have been corrected (and extra tests have been added).

Changes in Version 2.19 (21 February 2003)

• The testcase groups are now separated into two .zip files, one for extended operations and the
other for subset arithmetic.

• The default setting for the extended directive is now 1.

• A new required directive, minexponent, has been added.

• A new condition, clamped, has been added.

• Hexadecimal representation notations have been added, in preparation for the new decimal32,
decimal64, and decimal128 testcase groups which have replaced the old single and double
format groups.

22 Appendix A – Changes Version 2.44

Changes in Version 2.21 (3 March 2003)

• A new directive, clamp, allows testing of clamped operations without requiring a specific
concrete format.

• A new testcase group, clamp, has been added.

• A new operator, apply has been added. This works like toSci and toEng except that the
result does not have to be in one of the strict canonical formats.

Changes in Version 2.25 (13 June 2003)

• The quantize operation and testcase group have been added.

Changes in Version 2.27 (23 July 2003)

• The integer (round-to-integer) operation has been replaced by the tointegral (round-to-
integral-value) operation. The latter implements the IEEE 754-2008 operation (no Inexact flag,
etc.).

Changes in Version 2.31 (29 August 2003)

• The samequantum operation and testcase group have been added.

Changes in Version 2.35 (27 November 2005)

• The exp, ln, and log10 operations and testcase groups have been added.

• The power testcase group has been greatly extended, to cover non-integer second operands, and
the powersqrt testcase group has been added.

Changes in Version 2.36 (28 April 2006)

• The comparetotal operation and testcase group has been added; this operation compares two
numbers using IEEE 754-2008 total ordering.

Changes in Version 2.38 (16 March 2007)

• Testcases may now have up to three operands (for fma).

• The following operations and testcase groups have been added: and, canonical, class,
comparesig, comparetotmag, copy, copyabs, copynegate, copysign, fma,
invert, logb, maxmag, minmag, nextminus, nextplus, nexttoward, or,
rotate, scaleb, shift, tointegralx, xor.

Changes in Version 2.40 (22 May 2007)

• Testcase groups that test only using the precisions and ranges of the three decimal formats in the
IEEE 754-2008 standard have been added. These are grouped under the names decSingle,
decDouble, and decQuad, where each includes further groups whose names are prefixed with
ds, dd, and dq respectively. There are nearly 30,000 testcases in these new groups.

Version 2.44 Appendix A – Changes 23

• The decimal32, decimal64, and decimal128 groups have been renamed to dsEncode,
ddEncode and dqEncode respectively, to match the naming scheme for the other fixed-size
testcases.

• A new rounding mode has been added: 05up (“round for re-reound”, where only 0 and 5 might
be rounded up; other last-place digits round down).

• The normalize operation and testcase group has been renamed reduce to avoid confusion.

Changes in Version 2.43 (29 Jul 2008)

References to IEEE 854 and the old IEEE 754 standard have been removed and/or changed to refer to
IEEE 754-2008, and specific URLs for the General Decimal Arithmetic site have been removed.

Also, all references to the General Decimal Arithmetic website have been updated to
http://speleotrove.com/decimal (its new location).

Changes in Version 2.44 (24 Mar 2009)

The document is now formatted using OpenOffice (generated from GML), for improved PDF files
with bookmarks, hot links, etc. There are no technical changes.

24 Appendix A – Changes Version 2.44

http://speleotrove.com/decimal

Index

A
abs operation 14
acknowledgements 5
add operation 14
and operation 14
ANSI standard

X3.274-1996 20
apply operation 14
argument

see operand 8
arithmetic

decimal 5

B
blanks

see spaces 7

C
canonical operation 14
clamp directive 13
clamp tests 19
clamped 16
class operation 14
comments 7
compare operation 14
comparesig operation 14
comparetotal operation 14
comparetotalmag operation 14
concrete representations 19
condition 8, 16

clamped 16
conversion syntax 16
division by zero 16
division impossible 16
division undefined 16
inexact 16
insufficient storage 16
invalid context 16
invalid operation 16
lost digits 16

overflow 16
rounded 16
subnormal 16
underflow 16

conversion 14, 15
syntax 16

copy operation 14
copyabs operation 14
copynegate operation 14
copysign operation 14
coverage 20

D
decDouble tests 19
decimal

arithmetic 5
specification 5

decimal128 tests 19
decimal32 tests 19
decimal64 tests 19
decQuad tests 19
decSingle tests 19
dectest directive 13
decTest extension 7
directive 7, 11

clamp 13
dectest 13
extended 12
maxexponent 11
minexponent 12
precision 11
rounding 11
version 12

divide operation 14
divideint operation 14
dividend 14, 15
division

by zero 16
impossible 16
undefined 16

divisor 14, 15

Version 2.44 Index 25

E
empty lines 7
encoding, file 7
engineering string 15
example testcase file 10
exception

see condition 16
exp operation 14
extended directive 12

F
file

encoding 7
extension 7
names 7
testcase 17

fma operation 14
format-dependent representation 9

G
group, of tests 7, 17

H
hexadecimal representation 9
history 20

I
id 8
IEEE standard 754-2008 20
IEEE standard 754-2008

exceptions 16
inexact 16
insufficent storage 16
interpretation of testcase 9
invalid

context 16
operation 16

invert operation 14

K
keyword

conditions 16
of directive 11
operations 14

L
line 7
ln operation 14
log10 operation 14
logarithm 14
logb operation 14
lost digits 16

M
max operation 14
maxexponent directive 11
maxmag operation 14
min operation 14
minexponent directive 12
minmag operation 14
minus operation 14
multiply operation 14

N
nextminus operation 14
nextplus operation 14
nexttoward operation 14
normalize

see reduce 15
null reference 8, 9

O
operand 8
operation 8

abs 14
add 14
and 14
apply 14
canonical 14
class 14
compare 14
comparesig 14
comparetotal 14
comparetotalmag 14
copy 14
copyabs 14
copynegate 14
copysign 14
divide 14
divideint 14
exp 14
fma 14
invert 14
ln 14
log10 14
logb 14
max 14
maxmag 14
min 14
minmag 14
minus 14
multiply 14
nextminus 14
nextplus 14
nexttoward 14
or 15

26 Index Version 2.44

plus 15
power 15
quantize 15
reduce 15
remainder 15
remaindernear 15
rescale 15
rotate 15
samequantum 15
scaleb 15
shift 15
squareroot 15
subtract 15
toEng 15
tointegral 15
tointegralx 15
toSci 15
trim 15
xor 15

operations 14
or operation 15
overflow 16

P
parameter

see operand 8
plus operation 15
power operation 15
precision directive 11

Q
quantize operation 15
quoted tokens 8

R
reduce operation 15
remainder operation 15
remaindernear operation 15
rescale operation 15
result 8
rotate operation 15
round-to-integral-value 15
rounded 16
rounding directive 11

S
samequantum operation 15
scaleb operation 15
scientific string 15
shift operation 15
spaces 7
squareroot operation 15
subnormal s 16

subnormal values 12
subtract operation 15
syntax, of testcases 7

T
test

clamp 19
conditions 16
decDouble 19
decimal128 19
decimal32 19
decimal64 19
decQuad 19
decSingle 19
directive 11
group 7
line in 7
operations 14
syntax 7

testcase 5
testcase

coverage 20
file 7
format 7
groups 7, 17
history 20
 17

testcase processing 9
toEng operation 15
tointegral operation 15
tointegralx operation 15
tokens 7

comments 7
quoted 8

toSci operation 15
trim operation 15

U
underflow 16
Unicode 7
UTF-8 encoding 7

V
value

of directive 11
of operand 8

version directive 12

X
xor operation 15

Z
zero

Version 2.44 Index 27

division by 16

-
-- (comment start) 7

?
? (undefined result) 8

#
(format-dependent representation) 8, 9

28 Index Version 2.44

	Introduction
	Acknowledgements

	Testcase file format
	Testcase syntax
	Quoted tokens
	Processing of a test case line
	Format-dependent representations
	Example

	Directives
	Operations
	Conditions

	Notes
	Testcase groups and coverage
	Testcase history

	Appendix A – Changes
	Changes in Draft 0.18 (13 July 2001)
	Changes in Draft 0.20 (25 September 2001)
	Changes in Version 1.00 (21 November 2001)
	Changes in Version 1.02 (30 November 2001)
	Changes in Version 1.03 (20 March 2002)
	Changes in Version 2.01 (3 July 2002)
	Changes in Version 2.06 (1 September 2002)
	Changes in Version 2.09 (8 October 2002)
	Changes in Version 2.19 (21 February 2003)
	Changes in Version 2.21 (3 March 2003)
	Changes in Version 2.25 (13 June 2003)
	Changes in Version 2.27 (23 July 2003)
	Changes in Version 2.31 (29 August 2003)
	Changes in Version 2.35 (27 November 2005)
	Changes in Version 2.36 (28 April 2006)
	Changes in Version 2.38 (16 March 2007)
	Changes in Version 2.40 (22 May 2007)
	Changes in Version 2.43 (29 Jul 2008)
	Changes in Version 2.44 (24 Mar 2009)

	Index

