
Decimal Library Performance

21st March 2009

Mike Cowlishaw

IBM Fellow
IBM UK Laboratories

mfc@uk.ibm.com

Version 1.12

mailto:mfc@uk.ibm.com

Copyright © IBM Corporation 2000, 2009. All rights reserved.

Table of Contents

Introduction 5
The libraries 5
Description of the tables 6
Notes 6

decimal64 performance 9

decimal128 performance 11

Index 13

Version 1.12 3

Introduction

This document describes some performance measurements of three implementations (libraries) of
decimal operations. These libraries implement various subsets of the operations defined in the
Decimal Arithmetic Specification,1 which describes a superset of the arithmetic operations in the 2008
IEEE 754 Standard for Floating-Point Arithmetic (“754r”).2

IEEE 754 specifies two variants of the encoding for decimal data; one with a decimal significand and
the other with a binary significand. Each of the libraries measured supports one of these encodings (in
various ways), and the performance measurements here use the encoding best suited to each library.

Comments on this document are welcome. Please send any comments, suggestions, and corrections to
the author, Mike Cowlishaw (mfc@uk.ibm.com).

The libraries
The tables later in this document give measurements for operations (where available) for three decimal
implementations:

decNumber
module

The decNumber module is part of the IBM decNumber package;3 it implements
arbitrary-precision arithmetic with fully tailorable parameters (rounding precision,
exponent range, and other factors can all be changed at run time). All decNumber
operations always accept arbitrary-length operands. The decNumber module uses a
general-purpose internal format (tunable at compile time) which requires conversions
to and from any external format. When working with 754r encodings all parameters
and results require conversions (each about 100 cycles).

decFloats
modules

The decFloats modules are also part of the decNumber package; they work directly on
the fixed-size encodings with decimal significand. This document gives results for the
decDouble and decQuad modules (64-bit and 128-bit formats).

Intel Decimal
Floating-Point
Library

The Intel4 Decimal Floating-Point Library (IDFPL) is an Intel Software Development
Product.5 The functions in the library work directly on the fixed-size encodings with
binary significand (64-bit and 128-bit formats).

All three implementations are open source and written in C.

The decNumber and decFloats implementations require 32-bit binary integer types only, conform to

1 See http://speleotrove.com/decimal/decarith.html
2 IEEE Std 754-1985 – IEEE Standard for Floating-Point Arithmetic, The Institute of Electrical and Electronics Engineers,

Inc., New York, 1985.
3 See http://speleotrove.com/decimal/#decNumber
4 “Intel” is a trade mark of the Intel Corporation.
5 See http://www.intel.com/cd/software/products/asmo-na/eng/219861.htm

Version 1.12 Introduction 5

http://www.intel.com/cd/software/products/asmo-na/eng/219861.htm
http://speleotrove.com/decimal/#decNumber
http://speleotrove.com/decimal/decarith.html

strict aliasing and alignment rules, and are tested for use on both little-endian and big-endian
architectures. They support string conversions for both ASCII/UTF8 and EBCDIC, BCD conversions,
and decimal integer operations (integer divide, shift, rotate, logical and, or, xor, etc.).

The IDFPL implementation requires 64-bit binary integer and floating-point types, and is assumed to
be little-endian and ASCII/UTF8 only (the README files do not refer to big-endian6 or EBCDIC
support). BCD conversions and decimal integer operations are not supported by the IDFPL
implementation.

Description of the tables
In the tables in the later sections, timings for each operation are given in processor clock cycles. Cycle
counts are generally a more useful indicator of comparative performance than “wall clock” times, but
vary considerably with processor architecture.

For example, the times below are cycles measured on an Intel Pentium M processor in an IBM X41T
Thinkpad7 – on a Pentium 4 or RISC processor most of the tests would show significantly higher cycle
counts. The compiler used also makes a measurable difference, so all the cycle counts were measured
using the same hardware, compiler, and compiler options (detailed in the notes in the next section).

In the tables, worst-case cycle times are shown for each operation for the decFloats modules (in the
column headed decDouble or decQuad), the IDFPL library (headed idfpl64 or idfpl128), and the
decNumber module (headed decNum).

Worst-case timings are quoted because best-case timings are generally trivial special cases (such as
NaN arguments) and “typical” instruction mixes are too application-dependent to be generally
applicable.

For each operation, the name of the operation is given, along with a brief description of the worst-case
form of the operation. This is the worst case for the decFloats modules (in some cases the worst case
is different for the other modules).

Notes
The following notes apply to all the tables in this document.

1. All timings were made on an IBM X41T Tablet PC (Pentium M, 1.5GHz, 1.5GB RAM) under
Windows XP Tablet Edition with SP2.

2. All modules were compiled using GCC version 3.4.4 with optimization settings -O3
-march=i686 (earlier experiments have indicated that these settings are the best compromise
for this hardware and version of GCC).

3. The default tuning parameters were used for decNumber and decFloats (DECUSE64=1,
DECDPUN=3, etc.); most of these only affect decNumber.

4. The options used for compiling and measuring the IDFPL functions were
DECIMAL_CALL_BY_REFERENCE=1, DECIMAL_GLOBAL_ROUNDING=0, and
DECIMAL_GLOBAL_EXCEPTION_FLAGS=0; these were chosen as the other two
implementations also pass parameters and context by reference.

5. Timings include call/return overhead, and for the decNumber module also include the costs of

6 In version 1.0 there are said to be references in the code to ENDIAN values, so some support may be present.
7 “Pentium” is a trade mark of the Intel Corporation. “Thinkpad” is a trade mark of Lenovo.

6 Introduction Version 1.12

converting operand(s) to decNumbers and results back to the appropriate format using the
decimal64 or decimal128 proxy modules.

6. “n/s” indicates an operation that is not supported.

7. “BCD” for decNumber is Packed BCD, using the decPacked module; for decFloats it is 8-bit
BCD.8 The IDFPL implementation does not provide BCD conversions.

8. The worst case for each operation is not always obvious from the code and is implementation-
dependent (for example, in the decFloats modules, an unaligned add is sometimes faster than an
aligned add). It is possible that there may be unusual cases which are slower than the counts
listed in the tables, for all the modules, although a wide variety of micro-benchmarks have been
tried.

9. A string-to-number conversion can theoretically have an arbitrarily large worst case as the string
could contain any number of leading, trailing, or embedded zeros; the timings shown in the
tables measured cases where the input string’s coefficient had up to eight more digits than the
precision of the destination format.

10.Since the performance measurements shown in the tables were made (in October 2007), the
common case of aligned additions on relatively short numbers (6–9 digits) has been measured
informally with the same compiler on similar hardware. For these, decNumber and IDFPL are
close to the same speed, and decFloats requires about 65% of the cycles (and is about 2.5× as
fast as the worst-case addition, for both formats).

8 The most recent decFloats modules support Packed BCD directly, however these conversions have not yet been
benchmarked.

Version 1.12 Introduction 7

decimal64 performance

These tables indicate the performance of common 64-bit operations. Please see the Introduction for
explanation.

These measurements are on decNumber/decFloats version 3.56 and IDFPL version 1.0, measured
2007.10.11 and 2007.10.19 respectively.

 64-bit conversions
 Operation decDouble idfpl64 decNum
 Encoding to BCD (with exponent)
 16-digit finite

 39 n/s 481

 BCD to encoding (with exponent)
 16-digit finite

 46 n/s 327

 Encoding to string
 16-digit, with exponent

 84 242 133

 Exact string to encoding (unrounded)
 16-digit, with exponent

 229 648 196

 String to encoding (rounded)
 16-digit, rounded, with exponent

 266 747 548

 Widen to 128-bit
 16-digit, with exponent

 30 51 209

 int32 to encoding
 From most negative int

 39 13 199

 Encoded integer to int32
 To most negative int32

 32 70 136

 Encoding (any value) to int32
 16-digit, all-nines round, to uint32

 178 165 n/s

Version 1.12 decimal64 performance 9

 64-bit miscellaneous operations
 Operation decDouble idfpl64 decNum
 Class (classify datum)
 Negative small subnormal

 37 95 113

 Copies (Abs/Negate/Sign)
 CopySign, copy needed

 25 16 338

 Count significant digits
 Single digit

 24 n/s 122

 Logical And/Or/Xor/Invert (digitwise)
 16-digit

 23 n/s 510

 Shift/Rotate
 Rotate 15 digits

 154 n/s 583

 64-bit computations
 Operation decDouble idfpl64 decNum
 Add (same-sign addition)
 16-digit, unaligned, rounded

 245 247 848

 Subtract (different-signs addition)
 16-digit, unaligned, rounded, borrow

 288 251

 Compare
 16-digit, unaligned, mismatch at end

 126 151 442

 CompareTotal
 16-digit, unaligned, mismatch at end

 149 142 594

 Divide
 16- by 16-digit (rounded)

 828 556 1576

 FMA (fused multiply-add)
 16-digit, subtraction, rounded

 785 879 1683

 LogB
 Negative result

 48 66 279

 MaxNum/MinNum
 16-digit, unaligned, mismatch at end

 155 183 656

 Multiply
 16×16-digit, round needed

 362 612 1305

 Quantize
 16-digit, round all-nines

 112 196 422

 ScaleB
 Underflow

 212 221 513

 To integral value
 16-digit, round all-nines

 135 170 709

10 decimal64 performance Version 1.12

decimal128 performance

These tables indicate the performance of common 128-bit operations. Please see the Introduction for
explanation.

These measurements are on decNumber/decFloats version 3.56 and IDFPL version 1.0, measured
2007.10.11 and 2007.10.19 respectively.

 128-bit conversions
 Operation decQuad idfpl128 decNum
 Encoding to BCD (with exponent)
 34-digit finite

 53 n/s 460

 BCD to encoding (with exponent)
 34-digit finite

 74 n/s 307

 Encoding to string
 34-digit, with exponent

 183 629 239

 Exact string to encoding (unrounded)
 34-digit, with exponent

 297 1331 597

 String to encoding (rounded)
 34-digit, rounded, with exponent

 451 1680 956

 Narrow to decimal64
 34-digit, all nines

 140 546 612

 int32 to encoding
 From most negative int

 44 18 199

 Encoded integer to int32
 To most negative int32

 32 87 156

 Encoding (any value) to int32
 34-digit, all-nines round, to uint32

 241 435 n/s

Version 1.12 decimal128 performance 11

 128-bit miscellaneous operations
 Operation decQuad idfpl128 decNum
 Class (classify number)
 Negative small subnormal

 53 355 133

 Copies (Abs/Negate/Sign)
 CopySign, copy needed

 27 33 380

 Count significant digits
 Single digit

 27 n/s 138

 Logical And/Or/Xor/Invert (digitwise)
 34-digit

 27 n/s 622

 Shift/Rotate
 Rotate 33 digits

 222 n/s 812

 128-bit computations
 Operation decQuad idfpl128 decNum
 Add (same-sign addition)
 34-digit, aligned

 433 672 1180

 Subtract (different-signs addition)
 34-digit, unaligned, rounded, borrow

 457 689

 Compare
 34-digit, unaligned, mismatch at end

 187 320 1125

 CompareTotal
 34-digit, unaligned, mismatch at end

 238 293 778

 Divide
 34- by 34-digit (rounded)

 2018 1961 3172

 FMA (fused multiply-add)
 34-digit, subtraction, rounded

 1622 3903 2707

 LogB
 Negative result

 58 138 299

 MaxNum/MinNum
 34-digit, unaligned, mismatch at end

 241 312 857

 Multiply
 34×34-digit, round needed

 821 2444 2235

 Quantize
 34-digit, round all-nines

 209 581 670

 ScaleB
 Underflow

 263 495 553

 To integral value
 34-digit, round all-nines

 233 461 886

12 decimal128 performance Version 1.12

Index

A
arithmetic

decimal 5
decimal128 11
decimal64 9
specification 5

C
cycle times 6

D
decDouble

performance 9
decFloats modules 5
decimal

arithmetic 5
specification 5

decimal128
arithmetic 11

decimal64
arithmetic 9

decNumber module 5
decQuad

performance 11

E
encoding

specification 5

G
GCC 6

I
IDFPL

see Intel Decimal Floating-Point Library 5
IEEE standard 754-2008 5
Intel Decimal Floating-Point Library 5

L
libraries 5

P
performance

cycles 6
decDouble 9
decQuad 11
notes 6
tables 6

S
specification 5

W
worst-case timings 6

Version 1.12 Index 13

	Introduction
	The libraries
	Description of the tables
	Notes

	decimal64 performance
	decimal128 performance
	Index

