
Decimal Arithmetic for Java

18th June 2000

Mike Cowlishaw

IBM Fellow
IBM UK Laboratories

mfc@uk.ibm.com

Version – 1.08

Table of Contents

Decimal arithmetic for Java 1

Design concepts 5

The BigDecimal class 7
Fields 8
Constructors 9
Operator methods 12
Other methods 16

The MathContext class 23
Fields 24
Constructors 27
Methods 28

Decimal arithmetic definition 29

Notes 39

Changes 41

Index 45

Version 1.08 ii

Decimal arithmetic for Java

The Java runtime environment includes a class (java.math.BigDecimal) for decimal
arithmetic. While suitable for simple financial calculations, it is missing a number of
features that are necessary for general-purpose decimal arithmetic. This document
describes what is missing, and proposes a small and upwards compatible enhancement
to the BigDecimal class which makes the necessary additions.

Included in this document are:

• an overview of the proposal (this section)

• the concepts behind the design

• the description of the proposed classes

• a detailed definition of the arithmetic

• notes and change history.

The requirements

Java currently provides classes (java.math.BigDecimal and java.math.BigInteger) for fixed point
arithmetic, and also supports native integer and binary floating point arithmetic directly.
Binary floating point is usually implemented by hardware, and therefore is widely used
for “numerically intensive” work where performance is critical.

However, with the growth in importance of applications where usability is the primary
concern, the anomalies of binary floating point arithmetic (such as the inability to rep-
resent common values such as 0.10 exactly) are increasingly troublesome.1 In financial
and commercial applications, especially, an arithmetic which can achieve exact decimal
results when required is essential. This is the original purpose of the BigDecimal class.

Unfortunately, the current BigDecimal class provides only a limited set of fixed point
operations on numbers which are in practice limited to those which can be represented
conveniently as “plain” numbers, with no exponent. There are, in addition, a number of
problems with conversions to and from other Java types. These, and the other problems
with the BigDecimal class, are listed overleaf.

1 See, for example, Floating point issues, C. Sweeney, at:
http://www.truebasic.com/tech08.html

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 1

Problems with the BigDecimal class:

1. The fixed point (integer + scale) arithmetic is suitable for some tasks (such as cal-
culating taxes or balancing a check book), but is inconvenient and awkward for many
common applications.

For example, calculating the total amount repaid on a mortgage over 20 years is
difficult, requiring several steps which do not involve exact arithmetic and which
may require explicit rounding. For this task (and many others) an arithmetic that
allows working to a chosen precision is both simpler and more convenient.

2. Several operators commonly used in applications are missing, specifically integer
division, remainder, and exponentiation to an integer power (as required for
straightforward calculation of the mortgage repayment just described, for example).

3. The constructors for BigDecimal do not accept exponential notation. This means
that results from other sources (for example, spreadsheets and calculators, or the
Java Double.toString() method) are difficult to use.

4. The string form of a BigDecimal is always a plain number. This means that very
large or very small numbers are expressed using many digits – this makes them
expensive and difficult to handle. For many calculations an exponential or floating
point representation is desirable (and is potentially more efficient).

5. The conversions from BigDecimal to Java integer types are dangerous. Specifically,
they are treated as a narrowing primitive conversion, even though there is a change
of base involved. This means that decimal parts of numbers can be dropped without
warning, and high order significant bits can also be lost without warning (an error
sometimes called “decapitation”). It was exactly this kind of error that caused the
loss of the Ariane 5 launcher in 1996.2

In the proposal that follows, these deficiencies are addressed by adding floating point
arithmetic and exponential notation to the BigDecimal class, in a fully upwards-
compatible and seamless manner. In addition, the set of base operators is completed, and
new robust conversion methods are added.

The proposal
This proposal answers the primary requirements of the last section by adding support for
decimal floating point arithmetic to the BigDecimal class. This is achieved by simply
adding a second parameter to the existing operator methods. The augmented class
implements the decimal arithmetic defined in the ANSI standard X3.274-1996,3 which
has the following advantages:

• The arithmetic was designed as a full-function decimal floating point arithmetic,
directly implementing the rules that people are taught at school.

For example, number length information is not lost, so trailing zeros can be correctly
preserved in most operations: 1.20 times 2 gives 2.40, not 2.4. This behavior is
essential both for usability and to maintain compatibility with the existing
BigDecimal class.

2 See: http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html
3 American National Standard for Information Technology – Programming Language REXX, X3.274-1996,

American National Standards Institute, New York, 1996.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 2

• Being a true decimal arithmetic, exact results are given when expected (for instance,
0.9/10 gives 0.09, not 0.089999996).

• The precision of the arithmetic is freely selectable by the user, not limited to a choice
from one or two alternatives; where necessary, calculations may be made using
thousands of digits. The operator definitions, and current implementations, impose
no upper limit on precision (though in practice, memory or processor constraints will
bound some calculations).

• The arithmetic operations are robust; there is no “wrap” of integers at certain sizes,
and ill-defined or out-of-range results immediately throw exceptions.

• The concept of a context for operations is explicit. This allows application-global
rules (such as precision and rounding) to be easily implemented and modified. This
aids testing and error analysis, as well as simplifying programming.

• Integers and fixed-scale numbers are a proper subset of all numbers. Conversions
to and from a different class are not necessary in order to carry out integer and
currency calculations.

• A large range of numbers are supported; by definition, exponents in the range of at
least E-999999999 through E+999999999 are supported, with a default precision of
nine decimal digits. Both scientific (where one digit is shown before the decimal
point) and engineering (where the power of ten is a multiple of three) exponential
notations are supported.

• The arithmetic was developed over several years, based directly on user feedback
and requirements, and in consultation with professional mathematicians and data
processing experts. It has been heavily used for over 16 years without problems, and
was recently reviewed in depth and ratified by the X3J18 committee for ANSI.

• Numerous public-domain and commercial implementations of the arithmetic exist.
IBM has implementations in C, C++, various Assembler languages, and for Java.

This arithmetic has been further enhanced by supporting a variety of rounding algo-
rithms, as already defined in Java 1.1 for the java.math.BigDecimal class.

A prototype of the proposed enhanced BigDecimal class has been specified (see the
remainder of this document) and has been fully implemented, including javadoc com-
ments following Java guidelines and an appropriate set of test cases.

It is a small class (at approximately 23,000 bytes, including line number tables, it is
smaller than the BigInteger class in Java 1.2), and does not use any native methods.
The class is based on code that has been in use since 1996, and which has been packaged
as a BigDecimal class since June 1998. It has been available on the IBM alphaWorks
site since late 1998.

For reasons explained later, the detail in this document also proposes adding one very
small new context class to Java, in addition to enhancing the BigDecimal class. The new
class would most logically be added to the java.math package in the Java Runtime Envi-
ronment, and it is suggested that it be called MathContext.

The changes to the Java runtime proposed are summarized on the next page.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 3

The changes to the current Java API affect only two classes; BigDecimal (which is
enhanced from the current specification) and MathContext (which is new).

BigDecimal

Instantiates a decimal number, and includes:

1. Constructors and methods for creating a BigDecimal number from the primitive
Java types, and from strings and BigInteger object. Four constructors and one
method have been added.

2. Operator methods, for the usual arithmetic operators, including comparisons.
Four new operators have been added, and all operator methods have a second
version which specifies a context.

3. Other methods, including standard Java methods (equals, hashCode, etc.), and
conversions to primitive types and String (intValueExact, floatValue, toString,
format, signum, etc.). Seven methods have been added, mostly to effect robust
(error-detecting) conversions.

This initial proposal does not include transcendental functions.

MathContext

A very small class, used for defining a context for arithmetic, as described in the next
section. This comprises four constructors and five methods (four “get” methods and
a toString() method).

These classes are available in the package com.ibm.math (that is, as the classes
com.ibm.math.BigDecimal and com.ibm.math.MathContext). Comments on them and on this
draft are welcome. Please send comments to Mike Cowlishaw, mfc@uk.ibm.com.

Acknowledgements
Very many people have contributed to the arithmetic described in this document, espe-
cially the IBM REXX language committee, the IBM Vienna Compiler group, and the X3
(now NCITS) J18 technical committee. Special thanks for their contributions to the
current design are due to Joshua Bloch, Dirk Bosmans, and Brian Marks.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 4

Design concepts

The decimal arithmetic defined here was designed with people in mind, and necessarily
has a paramount guiding principle – computers must provide an arithmetic that works
in the same way as the arithmetic that people learn at school.

Many people are unaware that the algorithms taught for “manual” decimal arithmetic
are quite different in different countries, but fortunately (and not surprisingly) the end
results differ only in details of presentation.

The arithmetic described here was based on an extensive study of decimal arithmetic and
was then evolved over several years (1978-1982) in response to feedback from thousands
of users in more than forty countries. Later minor refinements were made during the
process of ANSI standardization.

In the past sixteen years the arithmetic has been used successfully for hundreds of
thousands of applications covering the entire spectrum of computing; among other fields,
that spectrum includes operating system scripting, text processing, commercial data
processing, engineering, scientific analysis, and pure mathematics research. From this
experience we are confident that the various defaults and other design choices are sound.

Fundamental concepts

When people carry out arithmetic operations, such as adding or multiplying two numbers
together, they commonly use decimal arithmetic where the decimal point “floats” as
required, and the result that they eventually write down depends on three items:

1. the specific operation carried out

2. the explicit information in the operand or operands themselves

3. the information from the implied context in which the calculation is carried out (the
precision required, etc.).

The information explicit in the written representation of an operand is more than that
conventionally encoded for floating point arithmetic. Specifically, there is:

• an optional sign (only significant when negative)

• a numeric part, or numeric, which may include a decimal point (which is only signif-
icant if followed by any digits)

• an optional exponent, which denotes a power of ten by which the numeric is multi-
plied (significant if both the numeric and exponent are non-zero).

The length of the numeric and original position of the decimal point are not encoded in
traditional floating point representations, such as ANSI/IEEE 854-1987,4 yet they are
essential information if the expected result is to be obtained.

4 ANSI/IEEE 854-1987 – IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute
of Electrical and Electronics Engineers, Inc., New York, 1987.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 5

For example, people expect trailing zeros to be indicated properly in a result: the sum
1.57 + 2.03 should result in 3.60, not 3.6; however, if the positional information has
been lost during the operation it is no longer possible to show the expected result.

Similarly, decimal arithmetic in a scientific or engineering context is based on a floating
point model, not a fixed point or fixed scale model (indeed, this is the original basis for
the concepts behind binary floating point). Fixed point decimal arithmetic packages such
as ADAR5 or the BigDecimal class in Java 1.1 are therefore only useful for a subset of the
problems for which arithmetic is used.

The information contained in the context of a calculation is also important. It usually
applies to an entire sequence of operations, rather than to a single operation, and is not
associated with individual operands. In practice, sensible defaults can be provided,
though provision for user control is necessary for many applications.

The most important contextual information is the desired precision for the calculation.
This can range from rather small values (such as six digits) through very large values
(hundreds or thousands of digits) for certain problems in Mathematics and Physics. Most
decimal arithmetics implemented to date (for example, the decimal arithmetic in the
Atari OS,6 or in the IEEE 854-1987 standard referred to above) offer just one or two
alternatives for precision – in some cases, for apparently arbitrary reasons. Again, this
does not match the user model of decimal arithmetic; one designed for people to use must
provide a wide range of available precisions.

The provision of context for arithmetic operations is therefore a necessary precondition
if the desired results are to be achieved, just as a “locale” is needed for operations
involving text.

This proposal provides for explicit control over four aspects of the context: the required
precision – the point at which rounding is applied, the rounding algorithm to be used when
digits have to be discarded, the preferred form of exponential notation to be used for
results, and whether lost digits checking is to be applied. Other items could be included
as future extensions (see page 40).

Embodiment of the concepts
The two kinds of information described (operands and context) are conveniently and
naturally represented by two classes for Java: one that represents decimal numbers and
implements the operations on those numbers, and one that simply represents the context
for decimal arithmetic operations. It is proposed that these classes be called BigDecimal
and MathContext respectively. The BigDecimal class enhances the original class of that
name by adding floating point arithmetic.

The defaults for the context have been tuned to satisfy the expectations of the majority
of users, and have withstood the test of time well. In the vast majority of cases, therefore,
the default MathContext object is all that is required.

5 “Ada Decimal Arithmetic and Representations”
See An Ada Decimal Arithmetic Capability, Brosgol et al. 1993.
http://www.cdrom.com/pub/ada/swcomps/adar/

6 See, for example, The [Atari] Floating Point Arithmetic Package, C. Lisowski.
http://intrepid.mcs.kent.edu/%7Eclisowsk/8bit/atr11.html

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 6

The BigDecimal class

public class BigDecimal
extends java.lang.Number
implements java.lang.Serializable, java.lang.Comparable

The BigDecimal class provides immutable arbitrary-precision decimal numbers. The
methods of the BigDecimal class provide operations for fixed and floating point arithme-
tic, comparison, format conversions, and hashing.

As the numbers are decimal, there is an exact correspondence between an instance of a
BigDecimal object and its String representation; the BigDecimal class provides direct
conversions to and from String and character array objects, as well as conversions to and
from the Java primitive types (which may not be exact) and BigInteger.

In the descriptions of constructors and methods that follow, the value of a BigDecimal
number object is shown as the result of invoking the toString() method on the object.
The internal representation of a decimal number is neither defined nor exposed, and is
not permitted to affect the result of any operation.

Operations on BigDecimal numbers are controlled by a MathContext object (see page
23), which provides precision and other information. Default settings are used if no
MathContext object is provided.

The names of methods in this class follow the conventions established by
java.lang.Number, java.math.BigInteger, and java.math.BigDecimal in Java 1.1 and Java 1.2.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 7

Fields

The following constant (static and final) fields are provided by the BigDecimal class.

ZERO

A BigDecimal object whose value is exactly 0.

ONE

A BigDecimal object whose value is exactly 1.

TEN

A BigDecimal object whose value is exactly 10.

In addition, the constant fields describing rounding modes (those whose name starts with
ROUND_) from the Java 1.1 BigDecimal class are preserved. These have the same names
and values as the corresponding fields in the MathContext class.7

7 These fields are preserved to maintain upwards compatibility. The MathContext class is their logical
home – the constants in that class should be used in preference to those in the BigDecimal class.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 8

Constructors

These constructors create an object of type BigDecimal from some other object or primi-
tive value. In all cases except construction from a double value (for which exact con-
version is often not possible) sufficient digits are used to represent the original value
exactly.

BigDecimal(char[])

Constructs a BigDecimal as though the character array had been copied to a String
and the BigDecimal(String) constructor (see page 10) had then been used. The
parameter must not be null.

BigDecimal(char[], int, int)

Constructs a BigDecimal from a subarray of characters. The first parameter is the
array in which the subarray is to be found, and the other parameters specify its
offset and length respectively.

The BigDecimal is constructed as though the subarray had been copied to a String
and the BigDecimal(String) constructor (see page 10) had then been used. The first
parameter must not be null, and the subarray must be wholly contained within the
array.

BigDecimal(double)

Constructs a BigDecimal which is an exact decimal representation of the 64-bit
signed binary floating point parameter. If the parameter is infinite, or is not a
number (NaN), a NumberFormatException is thrown.

Note: this constructor provides an exact conversion, so does not give the same result
as converting the double to a String using the Double.toString() method and then
using the BigDecimal(String) constructor. For that result, use the static
valueOf(double) method (see page 22) to construct a BigDecimal from a double (or
from a float).

BigDecimal(int)

Constructs a BigDecimal which is the exact decimal representation of the 32-bit
signed binary integer parameter. The BigDecimal will contain only decimal digits,
prefixed with a leading minus sign (hyphen) if the parameter is negative. A leading
zero will be present only if the parameter is zero.

BigDecimal(java.math.BigDecimal)

Constructs a BigDecimal as though the parameter had been represented as a String
(using its toString method) and the BigDecimal(java.lang.String) constructor (see page
10) (see below) had then been used. The parameter must not be null.

(Note: this constructor is provided only in the com.ibm.math version of the
BigDecimal class. It would not be present in a java.math version.)

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 9

BigDecimal(java.math.BigInteger)

Constructs a BigDecimal which is the exact decimal representation of the BigInteger
parameter. The parameter must not be null.

The BigDecimal will contain only decimal digits, prefixed with a leading minus sign
(hyphen) if the BigInteger is negative. A leading zero will be present only if the
BigInteger is zero.

BigDecimal(java.math.BigInteger, int)

Constructs a BigDecimal which is the exact decimal representation of the
BigInteger, scaled by the second parameter (the scale). The value of the BigDecimal
is the BigInteger divided by ten to the power of the scale. The BigInteger parameter
must not be null.

The BigDecimal will contain only decimal digits (with an embedded decimal point
followed by scale decimal digits if the scale is positive), prefixed with a leading minus
sign (hyphen) if the BigInteger is negative. A leading zero will be present only if the
BigInteger is zero.

A NumberFormatException is thrown if the scale is negative.

BigDecimal(java.lang.String)

Constructs a BigDecimal from the parameter, which must represent a valid number
(see page 29). The parameter must not be null.

In summary, numbers in String form must have at least one digit, may have a
leading sign, may have a decimal point, and exponential notation may be used. They
follow conventional syntax, and may not contain blanks.

Some valid Strings from which a BigDecimal might be constructed are:

 "0" /* Zero */
"12" /* A whole number */

"–76" /* A signed whole number */
"12.70" /* Some decimal places */
"+0.003" /* A plus sign is allowed, too. */
"17." /* The same as 17 */

".5" /* The same as 0.5 */
"4E+9" /* Exponential notation */
"0.73e–7" /* Exponential notation */

(Exponential notation means that the number includes an optional sign and a power
of ten following an “E” that indicates how the decimal point will be shifted. Thus the
"4E+9" above is just a short way of writing 4000000000, and the "0.73e–7" is short
for 0.000000073.)

The BigDecimal constructed from the String is in a standard form, as though the add
method (see page 13) had been used to add zero to the number with unlimited pre-
cision.8

If the string uses exponential notation (that is, includes an e or an E), then the
BigDecimal number will be expressed in scientific notation (where the power of ten

8 That is, with a digits setting (see page 26) of 0.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 10

is adjusted so there is a single non-zero digit to the left of the decimal point). In this
case if the number is zero then it will be expressed as the single digit 0, and if non-
zero it will have an exponent unless that exponent would be 0. The exponent must
fit in nine digits both before and after it is expressed in scientific notation.

Any digits in the parameter must be decimal; that is:

java.lang.Character.digit(c, 10)

(where c is the character in question) would not return -1.

A NumberFormatException is thrown if the parameter is not a valid number or the
exponent will not fit in nine digits.

BigDecimal(long)

Constructs a BigDecimal which is the exact decimal representation of the 64-bit
signed binary integer parameter. The BigDecimal will contain only decimal digits,
prefixed with a leading minus sign (hyphen) if the parameter is negative. A leading
zero will be present only if the parameter is zero.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 11

Operator methods

These methods implement the standard arithmetic operators for BigDecimal objects.

Each of the methods here9 takes a MathContext (see page 23) object as a parameter,
which must not be null but which is optional in that a version of each of the methods is
provided which does not require the MathContext parameter. This is indicated below by
square brackets in the method prototypes.

The MathContext parameter provides the numeric settings for the operation (precision,
and so on). If the parameter is omitted, then the settings used are "digits=0
form=PLAIN lostDigits=0 roundingMode=ROUND_HALF_UP".10 If MathContext.DEFAULT is
provided for the parameter then the default values of the settings are used ("digits=9
form=SCIENTIFIC lostDigits=0 roundingMode=ROUND_HALF_UP").

For monadic operators, only the optional MathContext parameter is present; the opera-
tion acts upon the current object.

For dyadic operators, a BigDecimal parameter is always present; it must not be null.
The operation acts with the current object being the left-hand operand and the
BigDecimal parameter being the right-hand operand.

For example, adding two BigDecimal objects referred to by the names award and extra
could be written as any of:

award.add(extra)
award.add(extra, MathContext.DEFAULT)
award.add(extra, acontext)

(where acontext is a MathContext object), which would return a BigDecimal object
whose value is the result of adding award and extra under the appropriate context set-
tings.

When a BigDecimal operator method is used, a set of rules define what the result will
be (and, by implication, how the result would be represented as a character string).
These rules are defined in the Decimal arithmetic section (see page 29), but in summary:

• Results are normally calculated with up to some maximum number of significant
digits. For example, if the MathContext parameter for an operation were
MathContext.DEFAULT then the result would be rounded to 9 digits; the division of
2 by 3 would then result in 0.666666667.

You can change the default of 9 significant digits by providing the method with a
suitable MathContext object. This lets you calculate using as many digits as you
need – thousands, if necessary. Fixed point (scaled) arithmetic is indicated by using
a digits setting of 0 (or omitting the MathContext parameter).

Similarly, you can change the algorithm used for rounding from the default
“classic” algorithm.

9 Except for two forms of the divide method, which are preserved from the original BigDecimal class.
10 This performs fixed point arithmetic with unlimited precision, as defined for the original BigDecimal class

in Java.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 12

• In standard arithmetic (that is, when the form setting is not PLAIN), a zero result is
always expressed as the single digit '0' (that is, with no sign, decimal point, or
exponent part).

• Except for the division and power operators in standard arithmetic, trailing zeros
are preserved (this is in contrast to binary floating point operations and most elec-
tronic calculators, which lose the information about trailing zeros in the fractional
part of results).

So, for example:

'2.40'.add('2') => '4.40'
'2.40'.subtract('2') => '0.40'
'2.40'.multiply('2') => '4.80'
'2.40'.divide('2', MathContext.DEFAULT) => '1.2'

This preservation of trailing zeros is desirable for most calculations (including
financial calculations).

If necessary, trailing zeros may be easily removed using division by 1.

• In standard arithmetic, exponential form is used for a result depending on its value
and the current setting of digits (the default is 9 digits). If the number of places
needed before the decimal point exceeds the digits setting, or the absolute value of
the number is less than 0.000001, then the number will be expressed in exponential
notation; thus

'1e+6'.multiply('1e+6', MathContext.DEFAULT)

results in “1E+12” instead of “1000000000000”, and

'1'.divide('3E+10', MathContext.DEFAULT)

results in “3.33333333E–11” instead of “0.0000000000333333333”.

The form of the exponential notation (scientific or engineering) is determined by the
form setting.

The descriptions of the operator methods follow.

abs([MathContext])

Returns the absolute value of the BigDecimal number. If the current object is zero
or positive, then the same result as invoking the plus method (see page 15) with the
same parameter is returned. Otherwise, the same result as invoking the negate
method (see page 15) with the same parameter is returned.

add(BigDecimal[, MathContext])

Implements the addition (+) operator (see page 32), and returns the result as a
BigDecimal object.

compareTo(BigDecimal[, MathContext])

Implements comparison, using numeric comparison (see page 36), and returns a
result of type int. The result will be:

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 13

-1 if the current object is less than the first parameter

0 if the current object is equal to the first parameter

1 if the current object is greater than the first parameter.

A compareTo(Object) method (see page 16) is also provided.

divide(BigDecimal[, MathContext])

Implements the division (/) operator (see page 33), and returns the result as a
BigDecimal object.

divide(BigDecimal, int)

Implements the division (/) operator (see page 33) using settings "digits=0
form=PLAIN lostDigits=0 roundingMode=rounding_mode", where rounding_mode
is the second parameter, and returns the result as a BigDecimal object.

The length of the decimal part (the scale) of the result will be the same as the scale
of the current object, if the latter were formatted without exponential notation.

An IllegalArgumentException is thrown if rounding_mode is not a valid rounding
mode.

divide(BigDecimal, int, int)

Implements the division (/) operator (see page 33) using settings "digits=0
form=PLAIN lostDigits=0 roundingMode=rounding_mode", where rounding_mode
is the third parameter, and returns the result as a BigDecimal object.

The length of the decimal part (the scale) of the result is specified by the second
parameter. An ArithmeticException is thrown if this parameter is negative.

An IllegalArgumentException is thrown if rounding_mode is not a valid rounding
mode.

divideInteger(BigDecimal[, MathContext])

Implements the integer division operator (see page 34), and returns the result as a
BigDecimal object.

max(BigDecimal[, MathContext])

Returns the larger of the current object and the first parameter.

If calling the compareTo method (see page 13) with the same parameters would
return 1 or 0, then the result of calling the plus method on the current object (using
the same MathContext parameter) is returned. Otherwise, the result of calling the
plus method on the first parameter object (using the same MathContext parameter)
is returned.

min(BigDecimal[, MathContext])

Returns the smaller of the current object and the first parameter.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 14

If calling the compareTo method (see page 13) with the same parameters would
return –1 or 0, then the result of calling the plus method on the current object (using
the same MathContext parameter) is returned. Otherwise, the result of calling the
plus method on the first parameter object (using the same MathContext parameter)
is returned.

multiply(BigDecimal[, MathContext])

Implements the multiply (*) operator (see page 32), and returns the result as a
BigDecimal object.

negate([MathContext])

Implements the negation (Prefix –) operator (see page 32), and returns the result
as a BigDecimal object.

plus([MathContext])

Implements the plus (Prefix +) operator (see page 32), and returns the result as a
BigDecimal object.

Note: This method is provided for symmetry with negate (this page) and also for
tracing, etc. It is also useful for rounding or otherwise applying a context to a deci-
mal value.

pow(BigDecimal[, MathContext])

Implements the power operator (see page 34), and returns the result as a BigDecimal
object.

The first parameter is the power to which the current number will be raised; it must
be in the range -999999999 through 999999999, and must have a decimal part of
zero. If no MathContext parameter is specified (or its digits property is 0) the power
must be zero or positive. If any of these conditions is not met, an
ArithmeticException is thrown.11

remainder(BigDecimal[, MathContext])

Implements the remainder operator (see page 35), and returns the result as a
BigDecimal object. (This is not the modulo operator – the result may be negative.)

subtract(BigDecimal[, MathContext])

Implements the subtract (–) operator (see page 32), and returns the result as a
BigDecimal object.

11 Note that the range and decimal part restrictions may be removed in the future, so should not be relied
upon to produce an exception.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 15

Other methods

These methods provide the standard Java methods for the class, along with conversions
to primitive types, scaling, and other useful methods.

None of the methods here take a MathContext object (see page 23) as a parameter.

byteValueExact()

Converts the BigDecimal to type byte. If the BigDecimal has a non-zero decimal
part or is out of the possible range for a byte (8-bit signed integer) result then an
ArithmeticException is thrown.

Note: the inherited method Number.byteValue() is also available; if that method is
used, then if the BigDecimal is out of the possible range for a byte (8-bit signed
integer) result then only the low-order 8 bits are used. (That is, the number may be
decapitated) To avoid unexpected errors when these conditions occur, use the
byteValueExact() method instead.

compareTo(java.lang.Object)

Compares the BigDecimal with the value of the parameter, and returns a result of
type int.

If the parameter is null, or is not an instance of the BigDecimal type, an exception
is thrown. Otherwise, the parameter is cast to type BigDecimal and the value of
compareTo(BigDecimal) using the cast parameter is returned.

The compareTo(BigDecimal[, MathContext]) method (see page 13) should be used when
the type of the parameter is known or when a MathContext is needed.

Implements Comparable.compareTo(java.lang.Object).

doubleValue()

Converts the BigDecimal to type double.

The double produced is identical to result of expressing the BigDecimal as a String
and then converting it using the Double(String) constructor; this can result in values
of Double.NEGATIVE INFINITY or Double.POSITIVE INFINITY.

Implements Number.doubleValue().

equals(java.lang.Object)

Compares the BigDecimal with the value of the parameter, and returns a result of
type boolean.

If the parameter is null, or is not an instance of the BigDecimal type, or is not
exactly equal to the current BigDecimal object, then false is returned. Otherwise,
true is returned.

“Exactly equal”, here, means that the String representations of the BigDecimal
numbers are identical (they have the same characters in the same sequence).

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 16

The compareTo(BigDecimal[, MathContext]) method (see page 13) should be used for
more general numeric comparisons.

Overrides Object.equals(java.lang.Object).

floatValue()

Converts the BigDecimal to type float.

The float produced is identical to result of expressing the BigDecimal as a String and
then converting it using the Float(String) constructor; this can result in values of
Float.NEGATIVE INFINITY or Float.POSITIVE INFINITY.

Implements Number.floatValue().

format(int, int) and

format(int, int, int, int, int, int)

Converts the BigDecimal to type java.lang.String, under the control of formatting
(layout) parameters. See also the toString method (see page 21).

The format method is provided as a primitive for use by more sophisticated classes
that will apply locale-sensitive editing of the result. The level of formatting that it
provides is a necessary part of the BigDecimal class as it is sensitive to and must
follow the calculation and rounding rules for BigDecimal arithmetic.

The parameters, all of type int, are provided to control the format of the String
returned. In the prototypes below, parameters are given names for ease of reference.
A value of -1 for a parameter indicates that the default action or value for that
parameter should be used.

If an error is detected during the execution of this method, an ArithmeticException
is thrown.

Most commonly, format is called with two parameters:

format(before, after)

The arguments before and after may be specified to control the number of characters
to be used for the integer part and decimal part of the result respectively. If either
of these is -1 (which indicates the default action), the number of characters used will
be as many as are needed for that part.

before must be a positive number; if it is larger than is needed to contain the integer
part, that part is padded on the left with blanks to the requested length. If before
is not large enough to contain the integer part of the number (including the sign, for
negative numbers) an error results.

after must be a non-negative number; if it is not the same size as the decimal part
of the number, the number will be rounded (or extended with zeros) to fit. Specifying
0 for after will cause the number to be rounded to an integer (that is, it will have
no decimal part or decimal point).

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 17

Examples: (In this and following examples, simple method notation for the
BigDecimal(String) constructor is used for clarity – the “new” operator would be
added for use from Java.)

BigDecimal(" – 12.73").format(–1,–1) == "–12.73"
BigDecimal("0.000").format(–1,–1) == "0.000"
BigDecimal("3").format(4,–1) == " 3"
BigDecimal("1.73").format(4,0) == " 2"
BigDecimal("1.73").format(4,3) == " 1.730"
BigDecimal("–.76").format(4,1) == " –0.8"
BigDecimal("3.03").format(4,–1) == " 3.03"
BigDecimal("3.03").format(4,3) == " 3.030"
BigDecimal("3.03").format(4,1) == " 3.0"
BigDecimal(" – 12.73").format(–1,4) == "–12.7300"

A further four arguments may be passed to the format method to control the use of
exponential notation and rounding. The syntax of the method with these arguments
added is then:

format(before, after, explaces, exdigits, exform, exround)

The first two arguments are as already described. The next three (explaces,
exdigits, and exform) control the exponent part of the result. As before, the default
action for any of these arguments may be selected by using the value -1.

explaces must be a positive number; it sets the number of places (digits after the sign
of the exponent) to be used for any exponent part, the default being to use as many
as are needed. If explaces is specified (is not -1), space is always reserved for an
exponent; if one is not needed (for example, if the exponent will be 0) then
explaces+2 blanks are appended to the result. If explaces is specified and is not large
enough to contain the exponent, an error results.

exdigits sets the trigger point for use of exponential notation. If, before any round-
ing, the number of places needed before the decimal point exceeds exdigits, or if the
absolute value of the result is less than 0.000001, then exponential form will be
used, provided that exdigits was specified. When exdigits is -1, exponential notation
will never be used. If 0 is specified for exdigits, exponential notation is always used
unless the exponent would be 0.

exform sets the form for exponential notation (if needed). exform may be either
SCIENTIFIC (the default) or ENGINEERING from the MathContext (see page 23) class.
If the latter, engineering, form is requested, up to three digits (plus sign) may be
needed for the integer part of the result (before).

Examples:

BigDecimal("12345.73").format(–1,–1,2,2,–1,–1) == "1.234573E+04"
BigDecimal("12345.73").format(–1,3,–1,0,–1,–1) == "1.235E+4"
BigDecimal("1.234573").format(–1,3,–1,0,–1,–1) == "1.235"
BigDecimal("123.45").format(–1,3,2,0,–1,–1) == "1.235E+02"
BigDecimal("1234.5").format(–1,3,2,0,eng,–1) == "1.235E+03"
BigDecimal("12345").format(–1,3,2,0,eng, –1) == "12.345E+03"
BigDecimal("1.2345").format(–1,3,2,0,–1,–1) == "1.235 "
BigDecimal("12345.73").format(–1,–1,3,6,–1,–1) == "12345.73 "
BigDecimal("12345e+5").format(–1,3,–1,–1,–1,–1) == "1234500000.000"

(where eng has the value MathContext.ENGINEERING).

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 18

Finally, the sixth argument, exround, selects the rounding algorithm to be used, and
must be one of the values indicated by a public constant in the MathContext class
(see page 24) whose name starts with ROUND_. The default (ROUND_HALF_UP) may also
be selected by using the value -1, as before.

Examples:

halfdown=MathContext.ROUND_HALF_DOWN
halfeven=MathContext.ROUND_HALF_EVEN
halfup =MathContext.ROUND_HALF_UP
BigDecimal("0.05").format(–1,1,–1,–1,–1,halfdown) == "0.0"
BigDecimal("0.05").format(–1,1,–1,–1,–1,halfeven) == "0.0"
BigDecimal("0.15").format(–1,1,–1,–1,–1,halfeven) == "0.2"
BigDecimal("0.05").format(–1,1,–1,–1,–1,halfup) == "0.1"

The special value MathContext.ROUND_UNNECESSARY may be used to detect whether
non-zero digits are discarded – if exround has this value than if non-zero digits would
be discarded (rounded) during formatting then an ArithmeticException is thrown.

hashCode()

Returns a hashcode of type int for the object. This hashcode is suitable for use by
the java.util.Hashtable class.

Overrides Object.hashCode().

intValue()

Converts the BigDecimal to type int. If the BigDecimal has a non-zero decimal part
it is discarded. If the BigDecimal is out of the possible range for an int (32-bit signed
integer) result then only the low-order 32 bits are used. (That is, the number may
be decapitated) To avoid unexpected errors when these conditions occur, use the
intValueExact() method instead.

Implements Number.intValue().

intValueExact()

Converts the BigDecimal to type int. If the BigDecimal has a non-zero decimal part
or is out of the possible range for an int (32-bit signed integer) result then an
ArithmeticException is thrown.

longValue()

Converts the BigDecimal to type long. If the BigDecimal has a non-zero decimal
part it is discarded. If the BigDecimal is out of the possible range for a long (64-bit
signed integer) result then only the low-order 64 bits are used. (That is, the number
may be decapitated) To avoid unexpected errors when these conditions occur, use
the longValueExact() method instead.

Implements Number.longValue().

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 19

longValueExact()

Converts the BigDecimal to type long. If the BigDecimal has a non-zero decimal
part or is out of the possible range for a long (64-bit signed integer) result then an
ArithmeticException is thrown.

movePointLeft(int)

Returns a plain BigDecimal whose decimal point has been moved to the left by the
number of positions, n, given by the parameter. That is, it returns:

this.multiply(TEN.pow(new BigDecimal(–n)))

n may be negative, in which case the method returns the same result as
movePointRight(-n).

movePointRight(int)

Returns a plain BigDecimal whose decimal point has been moved to the right by the
number of positions, n, given by the parameter. That is, it returns:

this.multiply(TEN.pow(new BigDecimal(n)))

n may be negative, in which case the method returns the same result as
movePointLeft(-n).

scale()

Returns a non-negative int which is the scale of the number. The scale is the
number of digits in the decimal part of the number if the number were formatted
without exponential notation.

setScale(int[,int])

Returns a plain BigDecimal whose scale is given by the first parameter.

If the scale is the same as or greater than the scale of the current BigDecimal then
trailing zeros will be added as necessary.

If the scale is less than the scale of the current BigDecimal, then trailing digits will
be removed, and the rounding mode given by the second parameter is used to
determine if the remaining digits are affected by a carry. In this case, an
IllegalArgumentException is thrown if rounding mode is not a valid rounding
mode.

The default rounding mode is ROUND_UNNECESSARY, which means that an
ArithmeticException is thrown if any discarded digits are non-zero.

An ArithmeticException is thrown if the scale is negative.

shortValueExact()

Converts the BigDecimal to type short. If the BigDecimal has a non-zero decimal
part or is out of the possible range for a short (16-bit signed) result then an
ArithmeticException is thrown.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 20

Note: the inherited method Number.shortValue() is also available; if that method is
used, then if the BigDecimal is out of the possible range for a short (16-bit signed
integer) result then only the low-order 16 bits are used. (That is, the number may
be decapitated) To avoid unexpected errors when these conditions occur, use the
shortValueExact() method instead.

signum()

Returns an int value that represents the sign of the BigDecimal. That is, -1 if the
BigDecimal is negative, 0 if it is exactly zero, or 1 if it is positive.

toBigDecimal()

Returns the number as an object of type java.math.BigDecimal. This is an exact
conversion; the result is the same as if the BigDecimal were formatted without any
rounding or exponent and then the java.math.BigDecimal(java.lang.String) constructor
were used to construct the result.

(Note: this method is provided only in the com.ibm.math version of the BigDecimal
class. It would not be present in a java.math version.)

toBigInteger()

Returns the number as an object of type java.math.BigInteger. Any decimal part
is truncated (discarded).

toBigIntegerExact()

Returns the number as an object of type java.math.BigInteger. If the BigDecimal
has a non-zero decimal part then an ArithmeticException is thrown.

toCharArray()

Returns the BigDecimal as a character array of type char[], as though the sequence
toString().toCharArray() had been used.

toString()

Returns the standard string of type java.lang.String that exactly represents the
BigDecimal, as described in the BigDecimal arithmetic definition (see page 29).

The format method (see page 17) is provided for controlled formatting of BigDecimal
numbers.

Overrides Object.toString().

unscaledValue()

Returns the number as a BigInteger after removing the scale. That is, the number
is expressed as a plain number, any decimal point is then removed, and the result
is then converted to a BigInteger.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 21

valueOf(double)

Returns a BigDecimal whose value is the decimal representation of the 64-bit signed
binary floating point parameter.

The BigDecimal is constructed as though the double had been converted to a String
using the Double.toString() method and the BigDecimal(String) constructor (see page
10) had then been used.

This is a static method. A NumberFormatException is thrown if the parameter is
infinite, or is not a number (NaN).

valueOf(long[,int])

Returns a plain BigDecimal whose value is the first parameter, val, optionally
adjusted by a second parameter, scale. The default scale is 0.

The result is given by:

(new BigDecimal(val)).divide(TEN.pow(new BigDecimal(scale)))

This is a static method. A NumberFormatException is thrown if the scale is negative.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 22

The MathContext class

public final class MathContext
implements java.lang.Serializable

The MathContext immutable class encapsulates the settings understood by the
BigDecimal class (see page 7) for the arithmetic operator methods (see page 12). The
operator methods are those that effect an operation on a number or a pair of numbers.

At present, the settings comprise the number of digits (precision) to be used for an oper-
ation, the form of any exponent that results from the operation, whether checking for lost
digits is enabled, and the algorithm to be used for rounding.

When provided, a MathContext object supplies the settings for an operation directly;
when MathContext.DEFAULT is provided then the default settings are used ("digits=9
form=SCIENTIFIC lostDigits=0 roundingMode=ROUND_HALF_UP").

All methods which accept a MathContext object (or null, implying the defaults) also have
a version of the method that will not accept a MathContext object. These versions carry
out fixed point arithmetic with unlimited precision (as though the settings were:
"digits=0 form=PLAIN lostDigits=0 roundingMode=ROUND_HALF_UP").

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 23

Fields

These fields contain the context settings or define certain values they may take.

Public constants

DEFAULT

A MathContext object whose settings have their default values for floating point
arithmetic.

The default values of the settings are:
"digits=9 form=SCIENTIFIC lostDigits=0 roundingMode=ROUND_HALF_UP"

ENGINEERING

A constant of type int that signifies that standard floating point notation (with
engineering exponential format, where the power of ten is a multiple of 3, if needed)
should be used for the result of a BigDecimal operation.

PLAIN

A constant of type int that signifies that plain (fixed point) notation, without any
exponent, should be used for the result of a BigDecimal operation. A zero result in
plain form may have a decimal part of one or more zeros.

SCIENTIFIC

A constant of type int that signifies that standard floating point notation (with sci-
entific exponential format, where there is one digit before any decimal point, if
needed) should be used for the result of a BigDecimal operation.

The remaining constants indicate rounding algorithms. Rounding is applied when a
result needs more digits of precision than are available; in this case the digit to the left
of the first discarded digit may be incremented or decremented, depending on the
rounding algorithm selected.12

ROUND_CEILING

A constant of type int that signifies that if any of the discarded digits are non-zero
then the result should be rounded towards the next more positive digit.

ROUND_DOWN

A constant of type int that signifies that all discarded digits are ignored (truncated).
The result is neither incremented nor decremented.

12 These constants have the same values as the constants of the same name in java.math.BigDecimal, which
have been preserved to maintain compatibility with earlier versions of BigDecimal.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 24

ROUND_FLOOR

A constant of type int that signifies that if any of the discarded digits are non-zero
then the result should be rounded towards the next more negative digit.

ROUND_HALF_DOWN

A constant of type int that signifies that if the discarded digits represent greater
than half (0.5) the value of a one in the next position then the result should be
rounded up (away from zero). Otherwise the discarded digits are ignored.

ROUND_HALF_EVEN

A constant of type int that signifies that if the discarded digits represent greater
than half (0.5) the value of a one in the next position then the result should be
rounded up (away from zero). If they represent less than half, then the result should
be rounded down.

Otherwise (they represent exactly half) the result is rounded down if its rightmost
digit is even, or rounded up if its rightmost digit is odd (to make an even digit).

ROUND_HALF_UP

A constant of type int that signifies that if the discarded digits represent greater
than or equal to half (0.5) the value of a one in the next position then the result
should be rounded up (away from zero). Otherwise the discarded digits are ignored.

ROUND_UNNECESSARY

A constant of type int that signifies that rounding (potential loss of information) is
not permitted. If any of the discarded digits are non-zero then an
ArithmeticException should be thrown.

ROUND_UP

A constant of type int that signifies that if any of the discarded digits are non-zero
then the result will be rounded up (away from zero).

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 25

Shared fields

These fields are shared with the BigDecimal class (that is, only “default access” from the
same package is allowed) for efficient access; they are never changed directly from
another class.

digits

A value of type int that describes the number of digits (precision) to be used for a
BigDecimal operation. A value of 0 indicates that unlimited precision (as many
digits as are required) fixed-scale arithmetic will be used.

The BigDecimal operator methods (see page 12) use this value to determine the
precision of results. Note that leading zeros (in the integer part of a number) are
never significant. digits will always be non-negative.

form

A value of type int that describes the format of results from a BigDecimal operation.
The BigDecimal operator methods (see page 12) use this value to determine the
formatting of results. form will be ENGINEERING, PLAIN, or SCIENTIFIC.

lostDigits

A value of type boolean that is true if checking for lost digits (see page 37) is ena-
bled, or is false otherwise. The BigDecimal operator methods (see page 12) use this
value to determine whether checking for lost digits should take place.

roundingMode

A value of type int that describes the rounding algorithm to be used for a
BigDecimal operation. The BigDecimal operator methods (see page 12) use this
value to determine the algorithm to be used when non-zero digits have to be dis-
carded in order to reduce the precision of a result. roundingMode will have the value
of one of the public constants whose name starts with ROUND_.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 26

Constructors

These constructors are used to set the initial values of a MathContext object. If any
parameter to a constructor has a value that is not in the permitted range for the corre-
sponding shared property then an IllegalArgumentException is thrown; the properties
of a MathContext object are guaranteed to have valid values.

MathContext(int)

Constructs a MathContext object which has its digits property set to the value of the
first parameter, its form property set to SCIENTIFIC, its lostDigits property set to
false, and its roundingMode property set to ROUND_HALF_UP.

MathContext(int, int)

Constructs a MathContext object which has its digits property set to the value of the
first parameter, its form property set to the value of the second parameter, its
lostDigits property set to false, and its roundingMode property set to
ROUND_HALF_UP.

MathContext(int, int, boolean)

Constructs a MathContext object which has its digits property set to the value of the
first parameter, its form property set to the value of the second parameter, its
lostDigits property set to the value of the third parameter, and its roundingMode
property set to ROUND_HALF_UP.

MathContext(int, int, boolean, int)

Constructs a MathContext object which has its digits property set to the value of the
first parameter, its form property set to the value of the second parameter, its
lostDigits property set to the value of the third parameter, and its roundingMode
property set to the value of the fourth parameter.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 27

Methods

The MathContext class has the following public methods for accessing its settings:

getDigits()

Returns a non-negative int which is the value of the digits setting of the
MathContext object.

getForm()

Returns an int which is the value of the form setting of the MathContext object.
This will be one of ENGINEERING, PLAIN, or SCIENTIFIC.

getLostDigits()

Returns a boolean which is the value of the lostDigits setting of the MathContext
object.

getRoundingMode()

Returns an int which is the value of the roundingMode setting of the MathContext
object. This will have the value of one of the public constants whose name starts
with ROUND_.

toString()

Returns a String representing the settings of the MathContext object as four
blank-delimited words separated by a single blank and with no leading or trailing
blanks, as follows:

1. The string digits=, immediately followed by the value of digits as a numeric
string.

2. The string form=, immediately followed by the value of form as a string (one of
SCIENTIFIC, PLAIN, or ENGINEERING).

3. The string lostDigits=, immediately followed by the value of lostDigits (1 for
true or 0 for false).

4. The string roundingMode=, immediately followed by the value of roundingMode
as a string. This will be the same as the name of the corresponding public
constant.

For example:

digits=9 form=SCIENTIFIC lostDigits=0 roundingMode=ROUND_HALF_UP

Additional words may be appended to the result of toString in the future if more
properties are added to the MathContext class.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 28

Decimal arithmetic definition

This definition describes the arithmetic implemented for numbers of type BigDecimal (see
page 7). The arithmetic operations where a precision is specified are identical to those
defined in the ANSI standard X3.274-1996,13 where an algorithmic definition of each
operation may be found. When unlimited precision is specified, the operations follow
fixed decimal rules, as defined for the Java 1.1 BigDecimal class.

It is important to note that this definition describes results (objects of type BigDecimal)
only in terms of their external representation – that is, when viewed with the toString
method (see page 21). This guarantees that there is no hidden information in the inter-
nal representation of the numbers (“what you see is exactly what you’ve got”) and that
the intermediate results of any calculation are always defined and inspectable.

Within this constraint, any internal representation of a BigDecimal may be used, pro-
vided that the results are identical to those that would result from converting any
BigDecimal object to type String and then back to a BigDecimal object at any point in this
definition.

Arithmetic operation notation
In this section, a simplified notation is used to illustrate the use of operator methods: a
BigDecimal object is shown as the string that would result from calling its toString
method rather than as the corresponding constructor and Java String. Single quotes are
used as a reminder that a BigDecimal rather than String object is implied. Also, the
sequence ==> means “results in”. Thus,

'12'.add('7.00',def) ==> '19.00'

means “new BigDecimal("12").add(new BigDecimal("7.00")) returns a BigDecimal
object exactly equal to new BigDecimal("19.00")”, or, more formally, it means that the
term:

new BigDecimal("12").add(new BigDecimal("7.00")).toString().equals(
 new BigDecimal("19.00").toString())

evaluates to true.

Finally, in this example and in thee examples below, the name def is assumed to be a
reference to the MathContext.DEFAULT object (see page 24).

Numbers from Strings
A number accepted by the BigDecimal(String) constructor (see page 10) is a character string
that includes one or more decimal digits, with an optional decimal point. The decimal
point may be embedded in the digits, or may be prefixed or suffixed to them. The group
of digits (and optional point) thus constructed may have an optional sign (“+” or “–”)

13 American National Standard for Information Technology – Programming Language REXX, X3.274-1996,
American National Standards Institute, New York, 1996.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 29

which must come before any digits or decimal point. No blanks or other white space
characters are permitted in a number.

Formally:

sign ::= + | –
digits ::= digit [digit]...
numeric ::= digits . [digits]

| [.] digits
number ::= [sign] numeric

where a digit is any decimal digit character, such that the value returned by

java.lang.Character.digit(c, 10)

(where c is the character in question) is not –1 and defines the value of the digit (0
through 9). Any decimal digit character outside the range '0' through '9' is treated as
though it were the corresponding character within that range.

Note that a single period alone is not a valid number.

Numbers may also include an exponent, as explained later (see page 36).

Precision

The maximum number of significant digits that can result from an arithmetic operation
is controlled by the digits setting in a MathContext object (see page 23).

If the digits setting is greater than 0, it defines the precision (number of significant digits)
to which arithmetic calculations will be carried out; results will be rounded to that pre-
cision, if necessary. If the digits setting is 0, then the precision is not limited to a specific
number of digits; the precision used is implied by the operands depending on the specific
operation, as described below.

If MathContext.DEFAULT is passed as a MathContext parameter, then the context is said
to be default, and a precision of nine digits is used.

If no MathContext object is provided for an operation,14 then the digits setting used is 0
(that is, unlimited precision).

An implementation-dependent maximum for the digits setting (equal to or larger than
1000) may apply: an attempt to create or change a MathContext object so that its digits
setting exceeds the maximum will cause an ArithmeticException to be thrown. Thus if
an algorithm is defined to use more than 1000 digits then if the MathContext object can
be set up without an exception then the computation will proceed and produce identical
results to any other implementation.15

Note that digits may be set to positive values below the default of nine. Small values,
however, should be used with care – the loss of precision and rounding thus requested
will affect all computations that use the low-precision MathContext object, including
comparisons.

14 That is, when the form of the method that takes no MathContext is used.
15 The com.ibm.math.BigDecimal implementation for Java puts a limit of 999999999 on the digits

setting.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 30

In the remainder of this section, the notation digits refers to the digits setting in use,
either from a MathContext object or by omission.

Arithmetic operators

The decimal arithmetic is effected by the operator methods (see page 12) of the BigDecimal
class – that is, the methods that may take a MathContext object as a parameter. These
methods either return a BigDecimal object result or, for the compareTo method only, an
int value.

If digits is not 0 for an arithmetic operation, the operand or operands (the numbers
being operated upon) have leading zeros removed (noting the position of any decimal
point, and leaving just one zero if all the digits in the number are zeros) and are then
rounded to digits significant digits16 (if necessary) before being used in the computation.
The operation is then carried out under up to double that precision, as described under
the individual operations below. When the operation is completed, the result is rounded
(again, if necessary) to digits digits.

If digits is 0 for an arithmetic operation, then the precision used for the calculation is
not limited by length, and in this case rounding is unnecessary, except for the results of
the division and power operators.

By default, all rounding is done in the “classical” manner, in that the extra (guard) digit
is inspected and values of 5 through 9 are rounded up, and values of 0 through 4 are
rounded down. Alternative rounding algorithms (such as even/odd rounding) may be
selected by changing the round setting (see page 26) of the MathContext object used for
an operation.17

In results, a decimal point is only included if it will be followed by one or more decimal
digits. A conventional zero is supplied preceding a decimal point if otherwise there would
be no digit before it. If the form setting is either ENGINEERING or SCIENTIFIC, then (as
required by convention) a result of zero is expressed as the single character '0'. Other-
wise, trailing zeros are retained for all operations, except as described below (for example,
for division when the form setting is not PLAIN).

The format method (see page 17) is defined to allow a number to be represented in a
particular format if the standard result provided by the toString method (see page 21)
does not meet requirements.

16 If rounding of operands is undesirable, then the lostDigits setting (see page 37) of the provided
MathContext object can be used to cause an exception to be thrown if rounding would be applied.

17 Or by using the explicit rounding mode parameter on the two divide methods from the original BigDecimal
class.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 31

Arithmetic operation rules – base operators

The base operators (addition, subtraction, multiplication, and division) operate on
BigDecimal numbers as follows:

Addition and subtraction

(The BigDecimal add, subtract, plus, and negate methods.)

If either number is zero and the form setting is not PLAIN then the other number,
rounded to digits digits if necessary, is used as the result (with sign and form
adjustment as appropriate).18 Otherwise, the two numbers are aligned at their units
digit and are then extended on the right and left as necessary up to a total maximum
of digits+1 digits19 (or as far as is needed to use all the digits of both numbers, if
digits is 0). The numbers are then added or subtracted as appropriate.

For example, the addition

'xxxx.xxx'.add('yy.yyyyy', context)

(where “x” and “y” are any decimal digits) becomes:

xxxx.xxx00
+ 00yy.yyyyy

zzzz.zzzzz

If digits is not 0 the result is then rounded to digits digits if necessary, taking into
account any extra (carry) digit on the left after an addition, but otherwise counting
from the position corresponding to the most significant digit of the terms being
added or subtracted. Finally, any insignificant leading zeros are removed.

The monadic (plus and negate) methods are evaluated using the same rules; the
terms a.plus() and b.negate() (where a and b refer to any BigDecimal objects) are
calculated as BigDecimal.ZERO.add(a) and BigDecimal.ZERO.subtract(b) respec-
tively (using the original MathContext parameter, if any).

Multiplication

(The BigDecimal multiply method.)

The numbers are multiplied together (“long multiplication”) resulting in a number
which may be as long as the sum of the lengths of the two operands. For example:

'xxx.xxx'.multiply('yy.yyyyy', context)

becomes:

'zzzzz.zzzzzzzz'

If digits is not 0 the result is then rounded to digits digits if necessary, counting
from the first significant digit of the result.

18 If the form setting is PLAIN, this short cut cannot be taken as trailing zeros may appear in a zero result.
19 The number with the smaller absolute value may therefore lose some or all of its digits on the right. In

the example, the number 'yy.yyyyy' would have three digits truncated if digits were 5.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 32

Division

(The BigDecimal divide methods.)

For the division:

'yyy'.divide('xxxxx', context)

the following steps are taken: first, the number 'yyy' is extended with zeros on the
right until it is larger than the number 'xxxxx' (with note being taken of the change
in the power of ten that this implies). Thus in this example, 'yyy' might become
'yyy00'. Traditional long division then takes place, which can be written:

xxxxx)
zzzz
yyy00

The length of the result ('zzzz') is such that the rightmost “z” will be at least as far
right as the rightmost digit of the (extended) “y” number in the example. During the
division, the “y” number will be extended further as necessary, and the “z” number
(which will not include any leading zeros) is also extended as necessary until the
division is complete.

If digits is not 0, the “z” number may increase up to digits+1 digits, at which point
it is rounded to digits digits (taking into account any residue) to form the result.

If digits is 0, the “z” number is increased until its scale (digits after the decimal
point) is the same as the scale of the original “y” number (or the explicitly specified
scale for the divide method that takes a scale parameter). An additional digit is then
computed (as though the scale were larger by one); this digit is then used, if
required, to round the “z” number (taking into account any residue) to form the
result.

Finally, if the form setting is either ENGINEERING or SCIENTIFIC, any insignificant
trailing zeros are removed.

Examples of the base operators:

'12'.add('7.00') ==> '19.00'
'1.3'.subtract('1.07') ==> '0.23'
'1.3'.subtract('2.07') ==> '–0.77'
'1.20'.multiply('3') ==> '3.60'
'7'.multiply('3') ==> '21'
'0.9'.multiply('0.8') ==> '0.72'

 '1'.divide('3',def) ==> '0.333333333'
 '2'.divide('3',def) ==> '0.666666667'
 '5'.divide('2',def) ==> '2.5'

'1'.divide('10',def) ==> '0.1'
'12'.divide('12',def) ==> '1'
'8.0'.divide('2',def) ==> '4'

Note: Except for division under unlimited precision, the position of the decimal point in
the terms being operated upon by the base operators is arbitrary. The operations may
be carried out as integer operations with the exponent being calculated and applied aft-
erwards. Therefore the significant digits of a result are not in any way dependent on the
position of the decimal point in either of the terms involved in the operation.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 33

Arithmetic operation rules – additional operators
The operation rules for the power, integer division, and remainder operators are as fol-
lows:

Power

(The BigDecimal pow method.)

The power operator raises a number (the left-hand operand) to a whole number
power (the right-hand operand).

If digits is not 0, the right-hand operand must be a whole number whose integer
part has no more digits than digits and whose decimal part (if any) is all zeros. It
may be positive, negative, or zero; if negative, the absolute value of the power is
used, and then the result is inverted (divided into 1).

If digits is 0, the right-hand operand must be a non-negative whole number whose
decimal part (if any) is all zeros.

For calculating the power, the number is effectively multiplied by itself for the
number of times expressed by the power, and finally trailing zeros are removed (as
though the result were divided by one).

In practice (see note below for the reasons), the power is calculated by the process
of left-to-right binary reduction. For “x.pow(n)”: “n” is converted to binary, and a
temporary accumulator is set to 1. If “n” has the value 0 then the initial calculation
is complete. Otherwise each bit (starting at the first non-zero bit) is inspected from
left to right. If the current bit is 1 then the accumulator is multiplied by “x”. If all
bits have now been inspected then the initial calculation is complete, otherwise the
accumulator is squared by multiplication and the next bit is inspected. When the
initial calculation is complete, the temporary result is divided into 1 if the power
was negative.

The multiplications and division are done under the normal arithmetic operation
and rounding rules, using the context supplied for the operation, except that if
digits is not 0, the multiplications (and the division, if needed) are carried out using
a precision of digits+elength+1 digits. Here, elength is the length in decimal
digits of the integer part of the whole number “n” (i.e., excluding any sign, decimal
part, decimal point, or insignificant leading zeros, as though the operation
n.abs().divideInteger(BigDecimal.ONE,context) had been carried out using
digits digits). The result is then rounded to digits digits.

If digits is 0, then the context is unchanged; the multiplications are carried out
with with digits set to 0 (that is, unlimited precision).

Finally, if the form setting is either ENGINEERING or SCIENTIFIC, any insignificant
trailing zeros are removed.

Integer division

(The BigDecimal divideInteger method.)

The integer divide operator divides two numbers and returns the integer part of the
result. The result returned is defined to be that which would result from repeatedly
subtracting the divisor from the dividend while the dividend is larger than the
divisor. During this subtraction, the absolute values of both the dividend and the

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 34

divisor are used: the sign of the final result is the same as that which would result
if normal division were used.

The result returned will have no decimal part (that is, no decimal point or zeros
following it). If digits is not 0 and the result cannot be expressed exactly within
digits digits, the operation is in error and will fail – that is, the result cannot have
more digits than the value of digits in effect for the operation. For example,
'10000000000'.divideInteger('3',context) requires ten digits to express the
result exactly ('3333333333') and would therefore fail if digits were in the range
1 through 9.

Remainder

(The BigDecimal remainder method.)

The remainder operator will return the remainder from integer division, and is
defined as being the residue of the dividend after the operation of calculating integer
division as just described, then rounded to digits digits (if digits is not 0). The
sign of the result, if non-zero, is the same as that of the original dividend.

This operation will fail under the same conditions as integer division (that is, if
integer division on the same two terms would fail, the remainder cannot be calcu-
lated).

Examples of the additional operators:

'2'.pow('3',def) ==> '8'
'2'.pow('–3',def) ==> '0.125'
'1.7'.pow('8',def) ==> '69.7575744'
'2'.divideInteger('3',def) ==> '0'

 '2.1'.remainder('3',def) ==> '2.1'
'10'.divideInteger('3',def) ==> '3'
'10'.remainder('3',def) ==> '1'

 '–10'.remainder('3',def) ==> '–1'
'10.2'.remainder('1',def) ==> '0.2'
'10'.remainder('0.3',def) ==> '0.1'
'3.6'.remainder('1.3',def) ==> '1.0'

Notes:

1. A particular algorithm for calculating powers is described, since it is efficient
(though not optimal) and considerably reduces the number of actual multiplications
performed. It therefore gives better performance than the simpler definition of
repeated multiplication. Since results could possibly differ from those of repeated
multiplication, the algorithm must be defined here so that different implementations
will give identical results for the same operation on the same values. Other algo-
rithms for this (and other) operations may always be used, so long as they give
identical results to those described here.

2. The integer divide and remainder operators are defined so that they may be calcu-
lated as a by-product of the standard division operation (described above). The
division process is ended as soon as the integer result is available; the residue of the
dividend is the remainder.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 35

Numeric comparisons
The BigDecimal operator method compareTo (see page 13) is used for comparing
BigDecimal numbers; it returns an int value.

Numeric comparison, using this method, is effected by subtracting the two numbers
(calculating the difference, as though by using the subtract method with the same
parameter or parameters) and then returning the sign of the result (–1 if the result is
negative, 0 if the result is zero, or 1 if the result is positive). For example, the operation:

a.compareTo(b,c)

returns the same result as:

a.subtract(b,c).signum()

It is therefore the difference between two numbers, when subtracted under the rules for
decimal subtraction, that determines their equality.

When the signs of the operands are different the signs of the operands (–1, 0, or 1) are
used for the comparison instead of the operands themselves.20

Exponential notation
The definition of numbers above (see page 29) describes “plain” numbers, in the sense
that the character strings that describe numbers can be very long.

Examples:

'10000000000'.multiply('10000000000') ==> '100000000000000000000'

'0.00000000001'.multiply('0.00000000001') ==> '0.0000000000000000000001'

For both large and small numbers, however, some form of exponential notation is useful,
both to make such long numbers more readable and to make evaluation possible in
extreme cases. In addition, exponential notation is normally used whenever the plain
form would give misleading information. For example, if digits were set to 5 in the
MathContext object referred to as context then:

'54321'.multiply('54321',context)

would round the multiplication to five digits and hence give the result '2950800000' if
plain form were to be used. This is misleading, as it appears that the result is an exact
multiple of 100000; instead, the result will by default be expressed in exponential nota-
tion, in this case as '2.9508E+9'.

The definition of number (see above) is therefore extended by replacing the description
of numeric by the following:

significand ::= digits . [digits]
| [.] digits

numeric ::= significand [E [sign] digits]

In other words, the numeric part of a number may be followed by an “E” (indicating an
exponential part), an optional sign, and an integer following the sign that represents a

20 This rule removes the possibility of an arithmetic overflow during a numeric comparison.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 36

power of ten that is to be applied. The “E” may be in uppercase or lowercase. Note that
no blanks are permitted within this part of a number, but the integer may have leading
zeros.

Examples:

The following all result in 0:

'12E+11'.compareTo('1200000000000',def)
'12E–5'.compareTo('0.00012',def)
'12e4'.compareTo('120000',def)

All valid numbers, expressed as a String, may be used to construct a BigDecimal object.

The results of calculations will be expressed in exponential form depending on their value
and the value of digits at the time of the calculation: if the number of places needed
before the decimal point exceeds digits (and digits is not 0), or if the absolute value
of the result is less than '0.000001' (regardless of the value of digits), then exponential
form will be used.

The exponential form generated by the toString method always has a sign following the
“E” for readability, and the “E” is in uppercase. If the exponent is 0 then the exponential
part is omitted – that is, an exponential part of “E+0” will never be generated.

Different exponential notations for the result of an operation may be selected with the
form setting in a MathContext object (see page 23). This setting allows the selection of
either scientific or engineering notation. Scientific notation (the default) adjusts the power
of ten so there is a single non-zero digit to the left of the decimal point. Engineering notation
causes powers of ten to be expressed as a multiple of three – the integer part may
therefore range from 1 through 999.

For example, with scientific notation:

'123.45'.multiply('1e11', def) ==> '1.2345E+13'

and with engineering notation (where eng is a MathContext object with form set to
MathContext.ENGINEERING):

'123.45'.multiply('1e11', eng) ==> '12.345E+12'

In addition, plain notation may be requested. This forces the result to be represented as a
plain number, without using exponential notation, regardless of the value of digits and
the value of the result.

If neither format for a number is satisfactory for a particular application, then the format
method (see page 17) may be used to control its appearance.

LostDigits checking
In some applications, it is desirable to check that significant information is not being lost
by rounding of input data. As it is inefficient to do this explicitly, especially if precisions
vary and there are many sources of input data, this definition provides for automatic
checking of this condition.

When enabled by the lostDigits setting of the provided MathContext object (see page 23)
being true, then if digits is not 0 then the operator methods first check that the number
of significant digits in all their BigDecimal operands is less than or equal to the digits

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 37

setting of the provided MathContext object; if this condition is not met, then an exception
is thrown.

Note that trailing zeros are in this case are not significant; if digits had the value 5,
then none of

0.12345
123.45
12345
12345.0000
1234500000

would throw an exception (whereas 12345.1 or 1234500001 would).

Exceptions and errors
The following exceptions and errors may be thrown during arithmetic:

• Divide exception

An ArithmeticException will be thrown if division by zero was attempted, or if the
integer result of an integer divide or remainder operation had too many digits.

• Overflow/Underflow

An ArithmeticException will be thrown if the exponential part of a result (from an
operation that is not an attempt to divide by zero) would exceed the range that can
be handled by the implementation when the result is represented according to the
current or implied MathContext.

This document defines a minimum capability for the exponential part, namely
exponents whose absolute value is at least as large as the largest number that can
be expressed as an exact integer in default precision. Thus, since the default preci-
sion is nine, implementations must support exponents in the range –999999999
through 999999999.

• Lost digits

An ArithmeticException will be thrown if an operand to an operator method has
more significant digits than digits, digits is not 0, and lostDigits checking is ena-
bled (see above).

• Unnecessary rounding

An ArithmeticException will be thrown if the result of an operation requires
rounding (that is, non-zero digits are to be discarded) and the current rounding
algorithm is ROUND_UNNECESSARY, which indicates that no rounding is expected or
should be permitted. Similarly, this exception will be thrown by the format method
in the same circumstances.

• Insufficient storage

Storage is needed for calculations and intermediate results, and on occasion an
arithmetic operation may fail due to lack of storage. This is considered an operating
environment error as usual, rather than an arithmetical exception, and an
OutOfMemoryError would be thrown.

In addition, other runtime exceptions may be thrown when invalid parameters are passed
to a method in the BigDecimal or MathContext classes.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 38

Notes

This section documents open questions and other items relevant to, but not part of, this
proposal.

Open questions

As of this draft there are no open questions.

Changes suggested for java.math.BigDecimal

This proposal suggests enhancing the current java.math.BigDecimal as defined in this
document. This section lists additional changes suggested for such an enhancement.

LostDigits exception

This definition currently uses ArithmeticException to signify the “lost digits” condi-
tion. It might be appropriate to define a new LostDigitsException (a subclass of
ArithmeticException) for this event.

Internationalization

The BigDecimal class as proposed provides canonical string representations of
BigDecimal numbers through the format and toString methods. These primitives
depend on the rules for decimal arithmetic and so are included in the class.

It is assumed that locale-sensitive classes (such as the classes in the java.text pack-
age) will in due course use these primitives to provide enhanced number presenta-
tions: for example, the DecimalFormat class might provide formatting for BigDecimal
numbers which allows thousands separators or a different decimal indicator. If
these are added, and provide a superset of the function of the two format methods,
then the latter should be removed.

com.ibm.math.BigDecimal conversions

The constructor and toBigDecimal method, provided for converting between
com.ibm.math.BigDecimal and java.math.BigDecimal, should be removed.

Deprecated methods

It is suggested that the byteValue, intValue, longValue, and shortValue methods be
added where necessary and all be deprecated.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 39

Differences from the Java 1.2 BigDecimal class
The BigDecimal class proposed in this document is an upwards compatible enhancement
of the original BigDecimal class. The following differences are noted:

1. The string constructors accept a superset of the number representations allowed
before. Notably, exponential notation (e.g., "1.5E+12") is now permitted.

2. The max and min methods now define which object is returned when the numbers
compare equal, as per ANSI X3.274-1996. (The current object is returned.)

3. In some cases it appears that the BigDecimal documentation does not fully define
the operation of methods (for example, if null is passed to methods that take objects
as parameters). This definition may therefore differ from the actual BigDecimal
operations in these cases (but no program should be relying on them).

Future extensions
The design of the two classes in this proposal allows for future extension. In particular,
new properties can be added to the MathContext class with ease. The following list
documents some possible future enhancements.

Scaled arithmetic

The concept of scaled fixed point arithmetic, where the final result has a specific
scale, could be extended to all operator methods simply by adding a new form setting
to the MathContext class, indicating that results should be calculated to give an
exact result with a scale of digits digits.

NaN and Infinity

In everyday arithmetic, undefined and infinite results are considered errors, and the
current design reflects this by raising an exception for these circumstances.
BigDecimals could be extended to permit the representation of Not-a-Number (NaN)
and +/- Infinity, with these values being allowed when enabled by a property in the
MathContext object.

Transcendental methods

Transcendental methods could be added to the BigDecimal class, or provided as a
separate class (similar to java.lang.Math). The most-requested of these would
simply extend the existing pow method to allow non-whole powers.

Fuzzy comparisons

The ANSI standard from which this proposal is derived includes provision for “fuzzy
comparisons” (numeric fuzz), where numeric comparisons are carried out at a lower
precision than other numeric operations.

This concept could be added, controlled by a property in the MathContext class, but
has been omitted from this proposal as it was rarely used (possibly because the need
for such comparisons is much reduced in a decimal floating point arithmetic). There
is also some evidence that fuzzy comparisons can give confusing results.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 40

Changes

This section documents changes since the first public draft of this specification (0.60, 8
Sep 1997). The classes in the proposal are here called the number class and the context
class because their names have changed over time.

Changes in Draft 0.70 (3 May 1998)

1. The precision of arithmetic (see page 30) required for conforming implementations
has been raised from 9 to 100 digits.21 The current implementation imposes a limit
of 999,999,999 digits.

2. The two-valued comparator methods in the number class have been replaced by the
three-valued compareTo method (see page 13). The number class now implements
the Comparable interface.

3. The power method in the number class has been renamed pow (see page 15). This
matches the name used in java.lang.Math and java.math.BigInteger.

4. The context class (see page 23) has been made final and immutable; its set methods
have been removed. Its getFormString method has also been removed and a toString
method has been added.

5. The lostdigits field in the context class has been renamed lostDigits (see page 26) to
match Java conventions.

6. The form property (see page 26) of the context class (and related constants) has been
changed from type byte to type int to match usual Java practice.

Changes in Draft 0.80 (6 June 1998)

1. A new round property (see page 26) has been added to the context class, with asso-
ciated constants and methods. This property is used for selecting rounding algo-
rithms; the constants used for selecting an algorithm have the same values as the
constants of the same name in the Java 1.1 java.math.BigDecimal class, and the indi-
cated algorithms have the same semantics.

21 This exceeds the known requirements of current commercial platforms, for example, Oracle Numbers (38
decimal digits), S/390 packed decimals (31 digits), and AS/400 decimals (31 digits).

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 41

2. The number class has been enhanced to implement the rounding algorithms that can
be described by a context object. The format method (see page 17) also supports the
same rounding algorithms.

Changes in Draft 0.90 (25 June 1998)
This draft is a major update in which the proposed number class is merged with the
original BigDecimal class (and renamed BigDecimal), and the context class is renamed.

1. The following constructors and methods from the BigDecimal class have been added
to the number class:

BigDecimal(BigInteger[,int]), divide(BigDecimal,int[,int]), movePointLeft(int),
movePointRight(int), scale(), setScale(int[,int]), toBigInteger(), unscaledValue().

All the other methods in BigDecimal were already in the number class.

2. The constant fields describing rounding modes (those whose name starts with
ROUND_) have been added to the number class.

3. A digits value of 0, indicating the use of unlimited-precision fixed-point arithmetic,
is now allowed in the context class. With this setting and using form=PLAIN, oper-
ators have the same semantics as the original BigDecimal class.

4. The context class (DecimalContext) has been renamed MathContext as it has no
base-10 dependencies in its content (other than illustrative commentary).

Changes in Draft 0.92 (12 July 1998)
This draft is a minor refinement of draft 0.90.

1. The conversions to and from the floating point primitives are now defined to match
their wrapper classes in java.lang. In particular, exponents without a sign will be
accepted, and the string form of a BigDecimal constructed from a primitive will be
the same as the string constructed using the corresponding wrapper class.

2. The use of a negative power as the argument to the pow method when digits is 0
is now in error (as the scale used would be 0, leading to a final result of 0 in all
cases).

3. The treatment of trailing zeros is now determined by the form property of the context
class, not the digits property.

4. Minor corrections and clarifications.

Changes in Draft 0.93 (28 October 1998)
This draft contains minor clarifications and editorial changes. There are no functional
changes.

Changes in Draft 0.94 (14 December 1998)
This draft is a minor refinement of draft 0.93.

1. Two methods have been added (for com.ibm.math.BigDecimal only): a constructor
from java.math.BigDecimal, and a toBigDecimal method which converts a number
to java.math.BigDecimal.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 42

2. The description and implementation of the pow (power) method has been changed
to conform to ANSI X3.274; the right-hand operand is no longer rounded before use.

3. Minor clarifications in the description of the format method (no functional changes).

Changes in Draft 0.95 (4 February 1999)
This draft primarily anticipates an errata to ANSI X3.274-1996.

1. Operands to the operator methods which have more digits than will be used for the
calculation are rounded to the specified digits instead of being truncated with a
guard digit. (This does not affect the option of causing a lostDigits exception to be
thrown instead.)

2. The description of the result of the BigDecimal(String) constructor when the String
includes exponential notation has been clarified.

3. The format method (see page 17) has been changed from seven underlying methods
(allowing all parameters to be optionally omitted from the right) to the two most
common forms.

Changes in Draft 0.96 (8 March 1999)
This draft includes a number of simplifications, changes for alignment with Java 1.2
conventions, and changes suggested by users.

Changes in the context class:

1. The DEFAULT_ constants have been removed, and a new DEFAULT field has been
added, to provide a default context for general-purpose arithmetic. The
constructor with no arguments is no longer necessary, and has been removed.

2. The round setting is now called the roundingMode setting, and the corresponding
get method is now named getRoundingMode.

3. The result of the toString method has been modified to make it more readable
and self-explanatory.

Changes in the number class:

1. It is no longer permitted to specify null for a context object, as there is no
precedent in the Java core classes for this notation. Instead, the
MathContext.DEFAULT object (or a reference to it) should be supplied.

2. The set of constructors has been simplified, to follow the style of Java core
classes, by dropping the constructors from the boolean, byte, char, float, and
short primitive types.

3. The constructors from String and char[] no longer permit embedded blanks,
following the precedent in other classes, such as Double(String).

4. A new constructor from a char[] has been added. This takes an offset and a
length, allowing a number embedded in a char array to be converted to a
BigDecimal without constructing an intermediate object.

5. A new valueOf(double) static method has been added, which converts a double
to a BigDecimal as though Double.toString() had been used to convert the num-
ber to a String, and the BigDecimal(String) constructor had then been used.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 43

6. The BigDecimal(double) constructor has been deprecated, as its results (now
identical to those of the original java.math.BigDecimal(double) constructor) are
not consistent with the results of the Double.toString() method.

7. The methods booleanValue() and charValue() have been removed.

8. The methods byteValue() (inherited from java.lang.Number), doubleValue(),
floatValue(), intValue(), longValue(), and shortValue() (inherited from
java.lang.Number) all now act as in Java 1.2; no exception is thrown for num-
bers that do not have an exact conversion.

9. The methods byteValueExact(), intValueExact(), longValueExact(), and
shortValueExact() have been added; these throw an ArithmeticException if the
conversion is not exact (that is, if the number has a non-zero decimal part, or
its magnitude is too large).

Changes in Draft 0.97 (13 March 1999)
The method toBigIntegerExact() has been added; this throws an ArithmeticException if
the conversion is not exact (that is, if the number has a non-zero decimal part).

Changes in Version 1.04 (10 July 1999)
Minor clarifications; the BigDecimal(String) constructor is limited to exponents of no more
than nine digits.

Changes in Version 1.08 (18 June 2000)
The BigDecimal(double) constructor is no longer deprecated. It provides an exact conver-
sion from double to BigDecimal, which is not available elsewhere.

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 44

Index

. (period)
in numbers 30, 31

A

abs method 13
Acknowledgements 4
ADAR

decimal arithmetic 6
add method 13
Addition

definition 32
ANSI standard

for REXX 2, 29
IEEE 854-1987 5
X3.274-1996 2

Arbitrary precision arithmetic 29
Arithmetic 29-38

comparisons 36
decimal 1
errors 38
exceptions 38
lost digits 37, 38
operation rules 32
operators 31
overflow 38
precision 30
rounding 38
underflow 38

ArithmeticException 38

B

BigDecimal class 6
constants 8
constructors 9
description 7
fields 8
operator methods 12
other methods 16

BigDecimal(BigDecimal) constructor 9
BigDecimal(BigInteger) constructor 10
BigDecimal(BigInteger,int)
constructor 10

BigDecimal(char[]) constructor 9
BigDecimal(char[],int,int) constructor 9,
43

BigDecimal(double) constructor 9, 44
BigDecimal(int) constructor 9
BigDecimal(long) constructor 11
BigDecimal(String) constructor 10, 44
Binary floating point 1
Blank

in numbers 30
byteValueExact method 16, 44

C

Calculation
context of 5
operands of 5
operation 5

Comparative methods 36
compareTo method 13, 16, 41
Comparison

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 45

See also compareTo method
fuzzy 40
of numbers 36

Constant
DEFAULT 24
ENGINEERING 24
ONE 8
PLAIN 24
ROUND_CEILING 24
ROUND_DOWN 24
ROUND_FLOOR 25
ROUND_HALF_DOWN 25
ROUND_HALF_EVEN 25
ROUND_HALF_UP 25
ROUND_UNNECESSARY 25
ROUND_UP 25
SCIENTIFIC 24
TEN 8
ZERO 8

Constructor
BigDecimal(BigDecimal) 9
BigDecimal(BigInteger) 10
BigDecimal(BigInteger,int) 10
BigDecimal(char[]) 9
BigDecimal(char[],int,int) 9, 43
BigDecimal(double) 9, 44
BigDecimal(int) 9
BigDecimal(long) 11
BigDecimal(String) 10, 44
MathContext(int) 27
MathContext(int,int) 27
MathContext(int,int,boolean) 27
MathContext(int,int,boolean,int) 27

Context
See also MathContext class
of calculation 5

Conversion
formatting numbers 17
from binary 9
to binary 16

D

Decapitation 2
Decimal arithmetic 1, 29-38

Atari 6
concepts 5
for Ada 6

Decimal digits
in numbers 30

Default arithmetic 24
Default MathContext 30
DEFAULT property 24, 43
Digit

definition 30
in numbers 30

digits property 26
divide method 14
divideInteger method 14
Division

by zero 38
definition 33

doubleValue method 16

E

E-notation 37
definition 36

Engineering notation 37
ENGINEERING property 24
equals method 16
Errors during arithmetic 38
Exceptions

divide 38
during arithmetic 38
lost digits 38
lostDigits 37
overflow 38
underflow 38
unnecessary rounding 38

Exponent
part of an operand 5

Exponential notation 10, 37
definition 36

Exponentiation
definition 34

Extensions 40

F

Fixed point arithmetic 24
Floating point arithmetic 24
floatValue method 17
form property 26, 41

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 46

format method 17, 42
Formatting numbers

to String 17, 21
Functions, transcendental 4
Future extensions 40
Fuzzy comparisons 40

G

General-purpose arithmetic 24
getDigits method 28
getForm method 28
getLostDigits method 28
getRoundingMode method 28, 43

H

hashCode method 19

I

IEEE standard 854-1987 5
Infinity 40
Integer arithmetic 29-38
Integer division

definition 34
Internationalization 39
intValue method 19
intValueExact method 19, 44

J

Java
arithmetic 1
floating point 1
runtime 1

L

Layout of numbers 17, 21
longValue method 19
longValueExact method 20, 44
lostDigits

checking 31, 37, 38
exception 39
property 26, 41

M

Mantissa of exponential numbers 36
MathContext

constructors 27
default 30
fields 24
methods 28

MathContext class 6, 42
description 23

MathContext(int) constructor 27
MathContext(int,int) constructor 27
MathContext(int,int,boolean)
constructor 27

MathContext(int,int,boolean,int)
constructor 27

max method 14
Method

abs 13
add 13
byteValueExact 16, 44
compareTo 13, 16
divide 14
divideInteger 14
doubleValue 16
equals 16
floatValue 17
format 17
getDigits 28
getForm 28
getLostDigits 28
getRoundingMode 28
hashCode 19
intValue 19
intValueExact 19, 44
longValue 19
longValueExact 20, 44

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 47

max 14
min 14
movePointLeft 20
movePointRight 20
multiply 15
negate 15
plus 15
pow 15
remainder 15
scale 20
setScale 20
shortValueExact 20, 44
signum 21
subtract 15
toBigDecimal 21
toBigInteger 21
toBigIntegerExact 21, 44
toCharArray 21
toString 21, 28
unscaledValue 21
valueOf(double) 22, 43
valueOf(long) 22

Methods
comparative 36
operator 31

min method 14
Modulo

See Remainder operator
movePointLeft method 20
movePointRight method 20
Multiplication

definition 32
multiply method 15

N

NaN 40
negate method 15
Non-Arabic digits

in numbers 30
Not a Number 40
Notation

engineering 37
plain 37
scientific 37

null MathContext parameter 43
Numbers

arithmetic on 31

comparison of 36
definition 29, 36
formatting to String 17
from Strings 29
rounding 17, 19

Numeric
part of a number 30, 36
part of an operand 5

O

ONE constant 8
Operand

of calculation 5
Operation 5
Operator methods

arithmetic 31
OutOfMemoryError 38
Overflow, arithmetic 38

P

Period
in numbers 30, 31

Plain notation 37
Plain numbers 36

See also Numbers
PLAIN property 24
plus method 15
pow (power) method 15, 41
pow method 42, 43
Power operator

definition 34
Powers of ten in numbers 36
Precision

arbitrary 29
default 30
of a calculation 6
of arithmetic 30, 41

Property
DEFAULT 24
digits 26
ENGINEERING 24
form 26
lostDigits 26
PLAIN 24

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 48

ROUND_CEILING 24
ROUND_DOWN 24
ROUND_FLOOR 25
ROUND_HALF_DOWN 25
ROUND_HALF_EVEN 25
ROUND_HALF_UP 25
ROUND_UNNECESSARY 25
ROUND_UP 25
roundingMode 26
SCIENTIFIC 24

Proposal 2

R

remainder method 15
Remainder operator

definition 35
Requirements 1
Residue

See Remainder operator
ROUND_CEILING property 24
ROUND_DOWN property 24
ROUND_FLOOR property 25
ROUND_HALF_DOWN property 25
ROUND_HALF_EVEN property 25
ROUND_HALF_UP property 25
ROUND_UNNECESSARY property 25
ROUND_UP property 25
Rounding 12

checking 38
definition 31
exception from 37
exceptions from 38
with format method 17, 19

roundingMode property 26, 41, 43

S

scale method 20
Scaled arithmetic 40
Scientific notation 37
SCIENTIFIC property 24
setScale method 20
shortValueExact method 20, 44
Sign

in numbers 30
of an operand 5

Significand of exponential numbers 36
Significant digits, in arithmetic 30
signum method 21
Simple number

See Numbers
Standard arithmetic 13, 24
subtract method 15
Subtraction

definition 32

T

TEN constant 8
Ten, powers of 36
toBigDecimal method 21
toBigInteger method 21
toBigIntegerExact method 21
toCharArray method 21
toString method 21, 28
Trailing zeros 32
Transcendental methods 4, 40

U

Underflow, arithmetic 38
unscaledValue method 21

V

valueOf(double) method 22, 43
valueOf(long) method 22

W

White space
in numbers 30

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 49

Z

ZERO constant 8
Zero, division by 38
Zeros, trailing 31

Version 1.08 Copyright (c) IBM Corporation 2000. All rights reserved. 50

