
Decimal Arithmetic Encodings

20th March 2009

Mike Cowlishaw

IBM Fellow
IBM UK Laboratories

mfc@uk.ibm.com

Version 1.01

mailto:mfc@uk.ibm.com

Copyright © IBM Corporation 2000, 2009. All rights reserved.

Table of Contents

Introduction 5

Overview 7

Scope 9
Objectives 9
Inclusions 9
Exclusions 9

Specification 11
Fields in the encodings 11
Lengths of the fields 13
The value of an encoded number 13
Examples 14

Appendix A – Calculation of Emax and bias 15

Appendix B – Changes 17

Index 19

Version 1.01 3

Introduction

This document describes decimal encodings suitable for supporting the general purpose floating-point
decimal arithmetic defined in the Decimal Arithmetic Specification, 1 which allows fixed-point and
integer decimal arithmetic as subsets.

The encodings are the product of discussions by a subcommittee of the IEEE committee (known as
754R) which revised the IEEE 754-19852 and IEE 854-19873 standards. These encodings are now
included in the new IEEE-SA 754 standard approved in June 2008.

The primary audiences for this document are implementers and standards-makers, so examples and
explanatory material are included. This informative material is identified as Notes, Examples, or
footnotes, and is not part of the formal specification.

Additional rationale and explanatory material can be found in the paper A Decimal Floating-Point
Specification.4 For further background details, please see the material at the associated web site:
http://speleotrove.com/decimal

Comments on this document are welcome. Please send any comments, suggestions, and corrections to
the author, Mike Cowlishaw (mfc@uk.ibm.com).

Acknowledgements

The author is indebted to David Bindel, Glenn Colon-Bonet, James Demmel, William Kahan, Dave
Raggett, Andy Rawson, Jason Riedy, Fred Ris, Eric Schwarz, Ronald Smith, Charles Webb, and Dan
Zuras, who have all directly contributed to this document.

Also, of course, thanks are due to all the contributors to standards work in the area – especially the
members of the Radix-Independent Floating-Point Arithmetic Working Group of the Microprocessor
Standards Subcommittee of the IEEE, the members of the X3 Secretariat/CBEMA (now NCITS)
Subcommittee J18, and the members of the IEEE 754r committee.

1 See http://speleotrove.com/decimal/decarith.html
2 ANSI/IEEE 754-1985 – IEEE Standard for Binary Floating-Point Arithmetic, The Institute of Electrical and Electronics

Engineers, Inc., New York, 1985.
3 IEEE 854-1987 – IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute of Electrical and

Electronics Engineers, Inc., New York, 1987.
4 A Decimal Floating-Point Specification, Schwarz, Cowlishaw, Smith, and Webb, in the Proceedings of the 15th IEEE

Symposium on Computer Arithmetic (Arith15), IEEE, June 2001.

Version 1.01 Introduction 5

http://speleotrove.com/decimal
http://speleotrove.com/decimal/decarith.html

Overview

(This overview is not part of the specification.)

This document describes decimal encodings for decimal numbers. These encodings allow for a range
of positive and negative values (including both normal and subnormal numbers), together with values
of ±0, ±Infinity, and Not-a-Number (NaN).

Three formats of decimal numbers are described:

• A decimal32 number, which is encoded in four consecutive bytes (32 bits)

• A decimal64 number, which is encoded in eight consecutive bytes (64 bits)

• A decimal128 number, which is encoded in 16 consecutive bytes (128 bits).

The finite numbers are defined by a sign, an exponent (which is a power of ten), and a decimal integer
coefficient. The value of a finite number is given by (-1)sign × coefficient × 10exponent. For example, if the
sign had the value 1, the exponent had the value -1, and the coefficient had the value 25, then the value
of the number is -2.5.

This dual integer description of numbers permits redundant encodings of some values. For example, if
the sign had the value 1, the exponent had the value -2, and the coefficient had the value 250, then the
numerical value of this number is also -2.5.

The advantage of this representation is that it exactly matches the definition of decimal numbers used
in almost all databases, programming languages, and applications. This in turn allows a decimal
arithmetic unit to support not only the floating-point arithmetic used in languages such as Java and C#
but also the strongly-typed fixed-point and integer arithmetic required in databases and other
languages.

The cost of the redundant encodings is approximately a 17% reduction in possible exponent values –
however, because the base is 10, the exponent range is always greater than that of the IEEE 754 binary
format of the same size.

In the encoding of these dual-integer numbers, the sign is a single bit, as for IEEE 754 binary numbers.
The exponent is encoded as an unsigned binary integer from which a bias is subtracted to allow both
negative and positive exponents. The coefficient is an unsigned decimal integer, with each complete
group of three digits encoded in 10 bits (this increases the precision available by about 15%, compared
to simple binary coded decimal).

Given the length of the coefficient and possible values for the encoded exponent, the maximum
positive exponent (Emax) and bias can be derived, as described in Appendix A (see page 15).

Version 1.01 Overview 7

Calculating the values leads to the following results for the three formats:

Format decimal32 decimal64 decimal128
Coefficient length in digits 7 16 34
Maximum Exponent (Emax) 96 384 6144
Minimum Exponent (Emin) -95 -383 -6143
Bias 101 398 6176

For the decimal32 format, the largest normal number is 9.999999 × 10Emax The coefficient and
exponent for some sample positive numbers in this format are:

Number

Dual-integer representation Encoded
exponent coefficient exponent

9.999999 × 10Emax 9999999 +90 191
1.234567 × 10Emax 1234567 +90 191
1.23 × 10Emax 1230000 +90 191
1 × 10Emax 1000000 +90 191
12345 12345 0 101
1 1 0 101
1.23 123 -2 99
123.45 12345 -2 99
1 × 10Emin 1 -95 6
1.000000 × 10Emin 1000000 -101 0
1.000001 × 10Emin 1000001 -101 0
0.000001 × 10Emin 1 -101 0

Of these positive numbers, the number 9.999999 × 10Emax (which has no redundant encoding) is the
largest normal number, the number 1 × 10Emin (and its redundant encodings) is the smallest normal
number, and 0.000001 × 10Emin (which has no redundant encoding) is the smallest subnormal number.

Note that numbers with the same “scale” (such as 1.23 and 123.45) have the same encoded exponent.

As shown in the first table, each format has a coefficient whose length is a multiple of three, plus one.
One digit of the coefficient (the most significant) cannot be included in a 10-bit group and instead is
combined with the two most significant digits of the exponent into a 5-bit combination field. This
scheme is more efficient than keeping the exponent and coefficient separated, and increases the
exponent range available by about 50%.

The combination field requires 30 states out of a possible 32 for the finite numbers; the other two
states are used to identify the special values. This localization of the special values means that only the
first few bits of a number have to be inspected in order to determine whether it is finite or is a special
value. Further, bulk initialization of storage to values of ±0, NaN, or ±Infinity can be achieved by
simple byte replication.

8 Overview Version 1.01

Scope

Objectives
This document describes decimal encodings (concrete representations) which are suitable for
supporting the general purpose decimal arithmetic defined in the Decimal Arithmetic Specification.5

Inclusions
This specification defines the following:

• The formats and layouts of 32-bit, 64-bit, and 128-bit decimal numbers (decimal32, decimal64,
and decimal128 respectively)

• The range of numerical values which can be represented by the formats

• The range of exponents which can be represented by the formats.

Exclusions
This specification does not define the following:

• The semantics of arithmetic and other operations on encoded numbers

• Exceptions and other consequences of operations on encoded numbers

• Encodings of context information

• Encodings with 96 bits or wider than 128 bits; however, any multiple of 32 bits can be used for
an IEEE 754 interchange format that follows the same encodings and rules described here (each
32 bits after the first adds 2 bits to the exponent and nine decimal digits to the coefficient).

5 See http://speleotrove.com/decimal/decarith.html

Version 1.01 Scope 9

http://speleotrove.com/decimal/decarith.html

Specification

This section defines decimal encodings for decimal numbers. These encodings allow for a range of
positive and negative values (including both normal and subnormal numbers), together with values of
±0, ±Infinity, and Not-a-Number (NaN).

Fields in the encodings
Each encoding comprises four fields, as follows:
sign A single bit indicating the polarity of the number.

In numbers for which the sign has meaning (for finite numbers and Infinity) a 1 indicates
the number is negative (or is negative zero) and a 0 indicates it is positive or is non-
negative zero.

combination
field

A 5-bit field which which encodes the two most significant bits (MSBs) of the exponent
(which may take only the values 0 through 2) and the most significant digit (MSD) of the
coefficient (4 bits, which may take only the values 0 through 9).

When any of the first four bits of the field is 0, the whole encoding describes a finite
number. When all of the first four bits of the field are 1, the whole encoding describes a
special value (an Infinity or NaN).

The following table defines the encoding of the combination field. The leftmost of the
bits in the combination field is placed first.

Combination
field (5 bits)

Type Exponent
MSBs (2 bits)

Coefficient
MSD (4 bits)

a b c d e Finite a b 0 c d e
1 1 c d e Finite c d 1 0 0 e
1 1 1 1 0 Infinity - - - - - -
1 1 1 1 1 NaN - - - - - -

Note that either one or both of the exponent MSBs will always be 0, so in the first line of
the table, either a or b (or both) will be 0, and in the second line of the table, either c or d
(or both) will be 0.

exponent
continuation

The remaining, less significant, bits of the exponent. The most significant of these bits is
on the left (is placed first).

The encoded exponent is formed by appending these continuation bits as a suffix to the two
exponent bits derived from the combination field. The whole encoded exponent forms a

Version 1.01 Specification 11

unsigned binary integer whose largest unsigned value, Elimit, is given by 3 × 2ecbits-1,
where ecbits is the number of bits in the exponent continuation. ecbits varies with the
format, as detailed below.

The value of the exponent is calculated by subtracting a bias from the value of the encoded
exponent, in order to allow both negative and positive exponents. The value of the bias
varies with the format, and is also detailed below. In each format, all values of encoded
exponent (0 through Elimit) can be used.

When the number is a NaN or an Infinity, the first two bits of the exponent continuation
field are used as follows:

Combination
field

Exponent continuation
field most significant bits

Value

1 1 1 1 0 - - Infinity
1 1 1 1 1 0 - quiet NaN
1 1 1 1 1 1 - signaling NaN

where “-” means undefined (an implementation may use these undefined bits for its own
purposes, such as to indicate the origin of a NaN value); however, a future standard might
require that the results of arithmetic set these bits to 1 for a NaN or 0 for an Infinity.

These assignments allow the bulk initialization of consecutive numbers in storage through
byte replication (for initial values of NaNs, ±Infinity, or ±0).

coefficient
continuation

The remaining, less significant, digits of the coefficient. The coefficient continuation is a
multiple of 10 bits (the multiple depending on the format), and the most significant group
is on the left (is placed first).

Each 10-bit group represents three decimal digits, using Densely Packed Decimal
encoding.6 Note that certain 10-bit groups encode the same value (all 8 possibilities where
all three digits in the value are either 8 or 9 have four possible encodings). For these
numbers, all four encodings are accepted as operands, but only the encoding with the first
two bits being 0 will be generated on output.

The coefficient is formed by appending the decoded continuation digits as a suffix to the
digit derived from the combination field. The value of the coefficient is an unsigned integer
which is the sum of the values of its digits, each multiplied by the appropriate power of
ten. That is, if there are n digits in the coefficient which are labeled dn dn-1 … d1 d0,
where dn is the most significant, the value is SUM(di × 10i), where i takes the values 0
through n.

The maximum value of the coefficient, Cmax, is therefore 10n-1.

The coefficient continuation field is undefined when the combination field indicates that the
number is an Infinity or NaN. In this case, an implementation may use the bits in the field

6 See Densely Packed Decimal Encoding, Mike Cowlishaw, in IEE Proceedings – Computers and Digital Techniques,
ISSN 1350-2387, Vol. 149, No. 3, pp102-104, IEE, May 2002.
 Abstract: Chen-Ho encoding is a lossless compression of three Binary Coded Decimal digits into 10 bits using an
algorithm which can be applied or reversed using only simple Boolean operations. An improvement to the encoding
which has the same advantages but is not limited to multiples of three digits is described. The new encoding allows
arbitrary-length decimal numbers to be coded efficiently while keeping decimal digit boundaries accessible. This in turn
permits efficient decimal arithmetic and makes the best use of available resources such as storage or hardware registers.
 A summary is available at: http://speleotrove.com/decimal/DPDecimal.html

12 Specification Version 1.01

http://speleotrove.com/decimal/DPDecimal.html

for its own purposes (for example, to indicate the origin of a NaN value); however, a
future standard might require that the results of arithmetic set these bits to 1 for a NaN or
0 for an Infinity.

The fields of encodings are laid out in the order they are described above. Within each field, the bits
are laid out as described for each field (that is, the combination field has its bits in the order abcde,
the exponent continuation field has its most significant bit first, and the coefficient continuation field
has its most significant 10-bit group first).

The network byte order (the order in which the bytes of an encoding are transmitted in a network
protocol such as TCP/IP) of an encoding is such that the byte which includes the sign is transmitted
first.

Lengths of the fields
This specification defines three formats for decimal numbers:

• a four-byte decimal32 format (32 bits)

• an eight-byte decimal64 format (64 bits)

• a sixteen-byte decimal128 format (128 bits).

Of these, the decimal32 format is required if the decimal64 format is provided, and the decimal64
format is required if the decimal128 format is provided.

In all three formats, the sign is always one bit and the combination field is always 5 bits. The lengths
of the other two fields vary with the format, and from these lengths the maximum exponent (Emax) and
bias can be derived, as described in Appendix A (see page 15). The following table defines the field
lengths (in bits, unless specified) and details the corresponding derived values.

Format decimal32 decimal64 decimal128
Format length 32 64 128
Exponent continuation length (ecbits) 6 8 12
Coefficient continuation length 20 50 110
Total Exponent length 8 10 14
Total Coefficient length in digits 7 16 34
Elimit 191 767 12287
Emax 96 384 6144
Emin -95 -383 -6143
bias 101 398 6176

The value of an encoded number
The value of an encoding is either a special value (a NaN or an Infinity) or it is a finite number whose
numerical value is given exactly by: (-1)sign × coefficient × 10exponent.

For example, if the sign had the value 1, the exponent had the value -1, and the coefficient had the value
25, then the numerical value of the number is exactly -2.5.

Version 1.01 Specification 13

Notes

1. More than one encoding may have the same numerical value; if the sign again had the value 1,
but the exponent had the value -2 and the coefficient had the value 250, then the numerical value
of the number would also be exactly -2.5.

2. The largest value of the exponent in a format is less than Emax because the coefficient is an
integer. For a format with precision p digits and maximum exponent Emax, IEEE 854 requires
that the maximum absolute value of a number be exactly (10p-1) × 10-(p-1) × 10Emax. (For
example, if p=7 and Emax=96 then the largest value allowed is 9.999999E+96.)

The maximum value of the exponent for a given format is therefore Emax-(p-1). For example, if
p=7 and Emax=96 then the number whose coefficient=9999999 and exponent=+90 has the value
9.999999E+96, which is the maximum normal number.

3. The method for deriving the values of Emax and bias ensures that all combinations of exponent
(0 through Elimit) and coefficient (0 through 10p-1) are allowed. For example, the exponent
encoded as zero is always allowed.

Examples
In the decimal64 format, the length and content of the fields are:

Length (bits) 1 5 8 50
Content Sign Combination

field
Exponent
continuation

Coefficient
continuation

In this format, the finite number -7.50 would be encoded as follows:

• The sign is 1 indicating that the number is negative.

• The coefficient will be 750, with 13 leading zeros. This is encoded with the first digit (0) in the
combination field, and the remaining 15 digits in the coefficient continuation field (four 10-bit
groups of all zero bits and the final group being the encoding of 750, which is the ten bits 11
1101 0000).

• The exponent will be -2, so the encoded exponent is this plus the bias, or 396. This is 01 1000
1100 in binary, with the first two bits being embedded in the combination field and the
remainder being placed in the exponent continuation field.

The bits of the combination field are therefore 01000 (the last three bits are 0 because the most
significant digit of the coefficient is 0). The full encoding is therefore (in hexadecimal, shown in
network byte order):

A2 30 00 00 00 00 03 D0

Simlarly, the value +Infinity is encoded as:
78 xx xx xx xx xx xx xx

(Where the bytes xx are undefined and could be repetitions of the 78.)

Note that only the first byte has to be inspected to determine whether the number is finite or is a
special value. Also, if the number is a special value, its specific value is fully defined in that first byte.

14 Specification Version 1.01

Appendix A – Calculation of Emax and bias

This section, which is not part of the encoding specification, describes how Emax and Emin (the
maximum and minimum exponents available in a format) and bias (the amount to be subtracted from
the encoded exponent to form the exponent’s value) are calculated.

Except for the calculation of Elimit, these calculations are general for any format where the coefficient
and exponent are both integers.

1. Let p be the precision (total length of the coefficient) of a format, in digits.

2. Let Emax be the maximum positive exponent for a value in a format, as defined in IEEE 854.
That is, the largest possible number is

(10p-1) / (10(p-1)) × 10Emax

For example, if p=7 this is 9.999999 × 10Emax.

3. The exponent needed for the largest possible number is Emax-(p-1) (because, for example, the
largest coefficient when p=7 is 9999999, and this only needs to be multiplied by 10Emax / 10(p-1)

to give the largest possible number).

4. Emin=-Emax (as defined by IEEE 854 for base 10 numbers). That is, the smallest normal number
is 10Emin. The exponent needed for this number is Emin (its coefficient will be 1).

5. The number of exponents, Enormals, used for the normal numbers is therefore 2 × Emax - p + 2.
(The values -Emax through -1, 0, and 1 through Emax-(p-1).)

6. Let Etiny be the exponent of the smallest possible (tiniest, non-zero) subnormal number when
expressed as a power of ten. This is Emin - (p-1).

For example. if p=7 again, the smallest subnormal is 0.000001 × 10Emin, which is 10Etiny.

The number of exponents needed for the subnormal numbers, Esubnormals, is therefore Emin - Etiny,
which is p - 1.

7. Let Erange be the number of exponents needed for both the normal and the subnormal numbers;
that is, Enormals + Esubnormals. This is (2 × Emax + 1).

8. Place Etiny so its encoded exponent (the exponent with bias added) is 0 (the encoded exponent
cannot be less than 0, and we want an all-zeros number to be valid – hence an encoded exponent
of 0 must be valid).

9. Let Elimit be the maximum encoded exponent value available. For the formats in the
specification, this is 3 × 2ecbits - 1, where ecbits is the length of the exponent continuation in bits
(for example, Elimit is 191 for the 32-bit format).

10.Then, the number of exponent values available is Elimit + 1, which is 3 × 2ecbits.

Version 1.01 Appendix A – Calculation of Emax and bias 15

11.Now, to maximize Emax, Erange = Elimit + 1

That is, 2 × Emax + 1 = 3 × 2ecbits.

12.Hence: Emax = (3 × 2ecbits - 1)/2 = Elimit/2

Note that the divisions by 2 must be truncating integer division.

13.If Elimit is odd (always the case in these encodings), one value of exponent would be unused. To
make full use of the values available, Emin remains as the value just calculated, negated, and
Emax is increased by one.7

Hence: Emin = -Elimit/2

and: Emax = Elimit/2 + 1

(where the divisions by 2 are truncating integer division).

14.And: bias = -Etiny = -Emin + p - 1

For example, let Elimit = 191 and p = 7 (the 32-bit format). Then:

 Emax = 191/2 + 1 = 96
 Emin = -95
 Etiny = -101
 bias = 101

The parameters and derived values for all three formats are as follows:

Format ecbits Elimit p Emax Emin bias
32-bit 6 191 7 96 -95 101
64-bit 8 767 16 384 -383 398
128-bit 12 12287 34 6144 -6143 6176

Note that it is also possible to consider the coefficients in these formats to have a decimal point after
the first digit (instead of after the last digit). With this view, the bit patterns for the layouts are
identical, but the bias would be decreased by p-1, resulting in the same value for a given number.

7 As decided by the IEEE 754r committee at its January 2003 meeting.

16 Appendix A – Calculation of Emax and bias Version 1.01

Appendix B – Changes

This appendix documents changes since the first circulation of the “Strawman 3” proposal (7
November 2002). It is not part of the specification.

Changes in Draft 0.88 (19 Nov 2002)

• It is pointed out that, although infinities and NaNs should be recognized as such based on only
the first byte of the number, arithmetic may well be required to fully define all bits of an infinite
or NaN result (for example, by clearing the remaining bytes to 0).

• A note has been added to Appendix A, pointing out that the coefficient can be considered to
have an internal decimal point if an appropriate change to the bias is made.

• The term Umax has been renamed Elimit for consistency with other documents.

Changes in Draft 0.93 (17 Dec 2002)

• The exponent range of all three formats has been expanded by making the largest normal
number be the largest representable number. This also simplifies the calculations of Emax and
bias. There are now no “supernormal” values, and one value of encoded exponent is always
unused (and is therefore available for future expansion of the encoding scheme).

• The names compact, single precision, and double precision have been replaced by the names
decimal4, decimal8, and decimal16 respectively, to avoid confusion with the binary floating-point
formats.

Changes in Draft 0.94 (12 Jan 2003)

• The distinction between signaling NaN and quiet NaN, using the top bit of the exponent
continuation field, has been made part of the specification.

• For an Infinity, the top bits of the exponent continuation field have been defined to be 0 (instead
of 1). This places Infinity logically adjacent to the finite numbers, and allows Infinities to have
all bits zero after the combination field.

Changes in Draft 0.95 (3 Feb 2003)

During the IEEE 754r committee meeting in January 2003, the following changes were agreed.

• Signaling NaN has been removed.

• Redundant Densely Packed Decimal encodings are permitted in operands.

Version 1.01 Appendix B – Changes 17

• The value of Emax is raised by one for all encodings (leaving Emin unchanged), hence using all
exponent values available.

These changes mean that all possible bit patterns in the formats are valid.

Changes in Draft 0.96 (21 Feb 2003)

During the IEEE 754r committee meeting in February 2003, the following changes were agreed.

• Signaling NaN has been restored.

• The names decimal4, decimal8, and decimal16 have been replaced by the names decimal32,
decimal64, and decimal128 respectively.

Changes in Version 1.00 (29 Jul 2008)

The decimal encodings are now included in the IEEE 754 standard approved in June 2008, so this
document is no longer a proposal and has been updated to reflect that. There are no technical changes
from the previous version (Strawman 4d).

Also, all references to the General Decimal Arithmetic website have been updated to
http://speleotrove.com/decimal (its new location).

Changes in Version 1.01 (20 Mar 2009)

The document is now formatted using OpenOffice (generated from GML), for improved PDF files
with bookmarks, hot links, etc. There are no technical changes.

18 Appendix B – Changes Version 1.01

http://speleotrove.com/decimal

Index

1
128-bit representation

decimal128 7
16-byte representation

decimal128 7

3
32-bit representation

decimal32 7

4
4-byte representation

decimal32 7

6
64-bit representation

decimal64 7

8
8-byte representation

decimal64 7

A
acknowledgements 5
ANSI standard

IEEE 754-1985 5
IEEE 854-1987 5

arbitrary precision 9
arithmetic 9

decimal 5, 9
specification 5

B
bias 7, 12, 13, 16
bits

128 7
32 7
64 7
ordering of 13

C
calculation

of bias 15
of Emax 15

Cmax 12
coefficient 7, 12

continuation 12
value of 12

combination field 8, 11
compact representation

decimal32 7
concrete representation 9
context information 9

D
decimal

arithmetic 5, 9
encodings 9
overview 7
specification 5, 11

decimal128 7, 13
decimal32 7, 13
decimal64 7, 13
Densely Packed Decimal encoding 12
dual integer 7

E
ecbits 11, 13, 15
Elimit 11, 13, 15
Emax 7, 13, 15, 16
Emin 7, 13, 15, 16
encoded exponent 11, 15
encoding 7, 9, 11

decimal128 13
decimal32 13
decimal64 13
Densely Packed Decimal 12
examples 8, 14, 16
fields 11
order of bits 13

Version 1.01 Index 19

order of fields 13
overview 7
specification 5
value of 13

Enormals 15
Erange 15
Esubnormals 15
Etiny 15
example encodings 8, 14, 16
exceptions 9
exclusions 9
exponent 7, 11

bias 7, 12, 13, 16
continuation 11
encoded 11
value of 12

F
fields 11

length 13
ordering of 13

finite number 11
example 14

I
IEEE standard 754-1985 5
IEEE standard 854-1987 5
inclusions 9
infinity 11, 12

example 14

L
length, of fields 13

M
mantissa

see coefficient 12

N
NaN 11, 12
network byte order 13

Not-a-Number
see NaN 11

numbers
exponent of 11

numerical value, of encoding 13

O
objectives 9
overview 7

P
p 14, 15
polarity 11
precision

arbitrary 9
decimal128 7
decimal32 7
decimal64 7

Q
quiet NaN 12

S
scaled integer

see dual integer 7
scope 9
sign 7, 11
signaling NaN 12
significand

see coefficient 12
special value 11
specification 5, 9, 11

T
TCP/IP byte order 13

V
value

of coefficient 12
of encoding 13
of exponent 11

20 Index Version 1.01

	Introduction
	Acknowledgements

	Overview
	Scope
	Objectives
	Inclusions
	Exclusions

	Specification
	Fields in the encodings
	Lengths of the fields
	The value of an encoded number
	Examples

	Appendix A – Calculation of Emax and bias
	Appendix B – Changes
	Changes in Draft 0.88 (19 Nov 2002)
	Changes in Draft 0.93 (17 Dec 2002)
	Changes in Draft 0.94 (12 Jan 2003)
	Changes in Draft 0.95 (3 Feb 2003)
	Changes in Draft 0.96 (21 Feb 2003)
	Changes in Version 1.00 (29 Jul 2008)
	Changes in Version 1.01 (20 Mar 2009)

	Index

