IEEE Task P854

Minutes, 20 April 1983

The radix-free floating-point working group of the Microprocessor Standards subcommittee of the IEEE
Computer Society met from 9:00 am. to 4:45 p.m. at the Argonne National Laboratories, Argonne,
Illinois. Seven people were in attendance.

Minutes from the 8 March meeting in Berkeley were agreed to.

The next meeting of P854 will be on Tuesday, June 7, 1983 in Denver in conjunction with the SIAM
National Meeting. It will be preceeded in the day by a mini-symposium on the status (technical and
procedural) of P754 and P854 comprising talks by Stevenson, Cody, Hough (vice Coonen), and Kahan.

John Palmer's proposal for a session at WesCon in October has been accepted. He will make firm ten-
tative commitments from Hough, Taylor, Owen, and Kahan.

On the continuing question of publication policy, Ris and Cody had paid a visit to Dave Jacobsohn at
Argonne (formerly an officer in the IEEE Computer Society) for advice. His advice was that works such
as P754 Draft 10.0 should be copyrighted by somebody, it might as well be IEEE, and that as long as the
cost of "official" copies was modest, there should be no problem with the |EEE making a charge provided
that there be no restrictions on further copying not for sale. This was presented to the meeting and re-
ceived unanimous endorsement as a sensible position. Cody will continue his attempts to get the IEEE
position clarified and offer the above formulation as a suggestion wherever confusion is encountered in
the IEEE hierarchy.

Changes to Draft 0.8. Changes made at the previous meeting to draft 0.7 were reviewed. The only
changes made to draft 0.8 were in section 5.6.

At the end of the second paragraph was left hanging the question of when inexact is signalled on the
conversion of very long decimal strings. Up to the previous meeting, the view was that inexact must be
signalled precisely in al cases in decimal implementations and could be fuzzed some to give misleading
signals in binary. That view under close scrutiny was found likely to be unredistic in some practical
situations, but Ris had some reservations about not requiring an inexact signal when a decimal string only
one digit longer than a basic precision could otherwise provoke a .9 ulp error without exception. The
observation that P754 aready permits as much as .8796 ulp in double and the generalization formulae
permit as much as .9671 ulp in a p=93 MaxD=29 implementation flattened that objection, and accordingly
the formulation adopted becomes quite simple. That paragraph will now read, "...to other decimal digits,
typicaly 0, and should signa inexact when nonzero digits are so discarded.” (The words following the
comma are new.)

In the fifth paragraph, the last sentence is to end after "...namely, MaxD digits." The footnote is also to
be transferred. (The remainder of the sentence was an implementation hint.)

In Table 2, the expression for MaxD in the case b=2 was simplified by noting that the minimum of the
two values presented would always be the first and therefore the expression could be simplified. For the
expression for MaxN it was agreed that the appropriate form is the floor of some integer times log 50(2),
but the question of how to specify the integer is now the sticky point. Various plausible alternatives are:

p + cel (log 20 (E maxO - E mind)) (1)
ped @)
p+7 ©)

p (4)



where p €0 is intended to mean the minimal extended precision induced by the basic precision (max (1.2p,
p+7)). There was agreement that (4) is too weak and that there is little to choose between (2) and (3).
Kahan preferred (1) on grounds of function, Cody and Ris preferred (2) on grounds of economy of spec-
ification and fewest additional implementation considerations, others were unsure. For the time being the
specification will be the minimum of (1) and (2) until stronger arguments appear. Meanwhile, the infa-
mous p ¢O has disappeared.

Language Issues. Kahan opened the discussion with the assertion that P754 explicitly intends that all
exceptions be treated as if run-time exceptions (although that intention must be inferred from the draft).
This leads to recurring language questions with potentially unpleasant answers.

The area which exposes most of the possible things which can go wrong is constant propagation (or
"folding") at compile-time. What happens when a robust code needs to generate infinity? Should
something like "X = 1.0/0.0" be written? What happens when a robust code want to generate zerodivide?
How can we separate the two? How can we even compute something like "1.0/3.0" when the rounding
mode in effect at execution may not be knowable at compile time?

These questions have been faced by compiler writers in the past and have been handled sometimes more
gracefully, sometimes less. But the problems are rather tame until the inexact exception is considered.
And with inexact, one doesn't need to look to constant folding as a source of trouble. If the inner loop
of a computation contains the constant 0.3 in a binary implementation, do we expect an inexact signal to
be generated each time through the loop at precisely the time the semantics of the language would have
caled for the conversion?

Compiler diagnostics for exceptions generated at compile time? Directives to the compiler at the level
of compilation units (e.g., Fortran subroutines)? At finer levels? (Now we get involved with the language
itself.) Compile time flags that remain sticky up to the start of execution? No matter what is done the
user can be misled under some circumstances. When this is the state of affairs, is pessimism preferable?
(Cf. discussion above about how much can be thrown away on conversion without notice.) Compile-time
flags which can be set, tested, and precipitate conditional compilation?

In the long run we hope the flags will have diminished importance as we become comfortable with the
calculus of infinities and NaNs. In the short run, flags are predominantly for the benefit of those who
are not consciously using the new facilities.

No conclusions were reached and there is not a solid feeling that al the issues have yet been identified.

Fred Ris



