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Overview

• Why we didn’t propose binary-integer 
decimal formats
– prior experience and measurements
– as explained in Arith15 paper, in 2001

• Costs of conversions to software formats

• Critical operations

Copyright © IBM 2005.   All rights reserved.
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The decimal model

• 754r: a significand ‘…is a string of digits…’

• 754r decimals make it possible to have 
languages with a single numeric type  (for 
both integers and floating-point)
– there is more than arithmetic to be done

• We must “design computers for the way 
people are rather than hope that people will 
adapt to computers”  WMK  6/2005
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BigInteger (binary) significands

• BigInteger significands are good for multiply

• For other operations they have no   
advantage, and often have very significant 
disadvantages, as shown by plentiful 
existing experience
– that’s why decNumber has chunks base 10n

• BigIntegers make simple things hard …
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BigInteger significand problems

• Counting digits needs full-width comparison
• Aligning an operand, shifting, or rounding all 

require multiplications (or a division)
• Conversions (string, BCD, Oracle ...)

need multiple multiplications (or divides)

• Unexpected performance characteristics 
lead programmers to choose the wrong 
algorithms; we should help programmers, 
not confuse them
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Java BigDecimal  (1996)

• Based on BigInteger, as BigInteger is a 
highly-tuned class; the assumption was 
that this would lead to a fast BigDecimal

• Experience: 
– good performance for simple multiply
– very poor rounding and conversions
– continuing customer complaints 
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BigDecimal, using BigInteger
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BigDecimal, using base-10

• Byte-per-digit implementation
– prototype for Java 5 decimal enhancements
– open source  (1999, google: decimalj)

– not performance-tuned
– slow multiply  (n 2 effect)

… even so, significantly faster than 
BigInteger-BigDecimal on SPECjbb2005



9

BigDecimal, using base-10
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BigDecimal comparison
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Itanium-optimized  (binary significand)
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Another BigInt implementation

• C# decimal has a binary significand
– implemented in C
– fixed-size, 128-bit, format
– significand is 3-element int32 array
– rounds at binary boundary (96 bits)
– similar characteristics to BigInteger-based

Java BigDecimal
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C# decimal – using int array
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Chunking with a 10n base

• Good performance on decimal-specific 
operations and also good performance on 
arithmetic – tuneable by changing n

• Performance characteristics match 
programmer expectations (human-friendly)

• n=4 is optimal for 32-bit machines; n=3 is 
almost as good and maps to declets
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decNumber – a C package

• Generic, fully dynamic (p, emax, rounding, 
etc.), precision up to 109 digits

• Licensed since 2001, now Open Source 
and commercial product (754r formats since 2/2003)

• Performance-tuned for Intel Pentium 

• Chunk size selectable (1–9) at compile-time
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Chunking with a 103 base
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Decimal chunking vs. 96-bit integer
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Chunking with a 10n base

• Current code uses binary chunks; a mistake
– slows conversions and rounding significantly

• Better would be to use n=3 or n=6 encoded 
as BCD (conversions and rounding then as good as n=1) 

• Either is better overall than big binary 
integers, and is suitable for any architecture 
(decNumber runs on cellphones upwards)
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Decimal chunking vs. big integer
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Cost of conversions
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Cost of conversions

• The benchmarks in BID-rationale are limited

• ‘Telco’ is a simplification of a traditional 
commercial mix; it is neither a modern nor
a general workload
– exact, aligned, unrounded, arithmetic (+, ×)
– simplest (quantize) rounding (no digit counting)
– only one conversion, of few digits
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Cost of conversions

• The comparison is based on arithmetic 
algorithms “that are specially designed for 
some particular class of architecture”

(BID Rationale June 17)

• “The fact that BID allows for short cuts is
a crucial factor in its outstanding 
performance” (BID Rationale July 12)

– ‘Telco’ is extraordinary in that almost all 
operations allow these short cuts
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Cost of conversions

• Without the fast binary hardware support, or 
with more general calculations, the reported 
advantage disappears

• In any case, ‘Telco’ has no requirement to 
convert to and from a format on every 
operation
– software can, of course, use whatever internal

format is best for the platform
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Cost of conversions

• Further, the study does not show the cost 
of converting BigInteger (BID) format to 
decimal formats

• As one example of that, we’ve written a 
64-bit BID conversion module for 
decNumber, so the conversion costs can be 
measured separately from arithmetic
– not the worst case, as target is binary chunks
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decNumber modules

decNumber
arithmetic 
package

(human-friendly, 
software-friendly 
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decNumber modules

decNumber
arithmetic 
package

(human-friendly,
software-friendly 
10n chunked 
internal format)

decimal128

decimal64

decimal32

packed BCD

BID 64-bit



27

16 digit conversions  (n=3)
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‘Telco’ variant (from May meeting)

• ‘Toy compiler’ variant – inner-loop variables 
convert, only 3 temporaries allowed
– adds to base benchmark 14.5 conversions for

every 9 operations

• Measured base benchmark (‘optimized’), 
and also ‘toy’ variant with conversions 
to/from 754r decimal64 format and BID64 
format (at various chunk sizes)
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‘Telco toy’ timings
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Critical operations
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Critical operations

• Many programming languages have only 
one numeric type, often decimal

• This is the preferred model for future 
applications programming  (no need to 
know about binary limits, no quiet overflow)
– binary int, long, etc. are not exposed
– traditional ‘integer’ operations use decimal 
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Shifting

• Used when assembling numbers
1 800 1234567 

(1 << 10)  +  (areacode << 7) +  localcode

… or for extracting parts of them

areacode = rem( tele >> 7, 1000)
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Bit manipulation

• Multiple flags stored in a number  (e.g., a 
state machine, 754 exception flags, etc.)

A B C D E
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Bit manipulation

• Multiple flags stored in a number  (e.g., a 
state machine, 754 exception flags, etc.)

A B C D E
1 0 1 0 1

written and stored as the (decimal) 
number  10101
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Bit manipulation

• Multiple flags stored in a number  (e.g., a 
state machine, 754 exception flags, etc.)

A B C D E
1 0 1 0 1

operations on 10101-style numbers:
– logical operations (and, or, xor, not)
– extract, clear, set, or test a flag
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Storing and retrieving 10101

• Declets with DPD:  each low order decimal 
digit bit is unencoded (including the one in the 
combination field).  Not even a lookup needed:  
…00100000010000001

and, or, xor, not, test, set, etc., are trivial in 
hardware or software

• Binary significand:  …0010011101110101
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Counting digits

• Needed for overflow and underflow 
detection, rounding, etc.

• With a decimal significand this is simple
– first non-zero digit

• With BigIntegers, first non-zero is just an 
estimate; an almost full-width comparison 
is also needed (after a 34-digit multiply, 
this is very wide: 194 bits)
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Overflow and Underflow

• n = count of significand digits

• Overflow occurs when:

result-exponent + n > Emax + 1

• Similar calculations are needed in several 
other places, for subnormal and underflow 
detection, etc.
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Rounding

• Quantize is relatively simple (the exponent 
change is easy to calculate) 

• Rounding to n digits is harder
– must count total digits first

• When digits are directly accessible, 
rounding is inspect-shift-add; BigIntegers
need at two multiplies, and more
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Rounding to 16 digits – decimal

1234567890123456 × 6543210987654321

8078038183661009782044541853376
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Rounding to 16 digits – decimal

1234567890123456 × 6543210987654321

8078038183661009782044541853376

Count 16 digits
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Rounding to 16 digits – decimal

1234567890123456 × 6543210987654321

8078038183661009782044541853376

Count 16 digits Inspect next digit 
(and zero-detect 
the others in 10% 
of cases)
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Rounding to 16 digits – decimal

1234567890123456 × 6543210987654321

8078038183661009782044541853376

Count 16 digits These digits do not 
have to be stored once 
calculated, just note if 
all zero; this can save 
almost half the buffer 
or register width
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Rounding to 16 digits – decimal

1234567890123456 × 6543210987654321

8078038183661009782044541853376

Count 16 digits These digits do not 
have to be stored 
once calculated, just 
note if all zero

Round up may cause a carry (all-9s case).  
This is trivial to detect in decimal.
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Rounding to 16 digits – binary

462D53C8ABAC0 × 173F04069C0CB1

65F58C92AF4E66A42FA9AC1EC0

Count 16 digits?
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Rounding to 16 digits – binary

462D53C8ABAC0 × 173F04069C0CB1

65F58C92AF4E66A42FA9AC1EC0

• Must calculate all but 16 bits (almost full-width) – always 

• Then (after leading-1 detect) carry out same-width 
comparison to find rounding point  (compare against 
1000000… etc.)
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Rounding to 16 digits – binary

462D53C8ABAC0 × 173F04069C0CB1

65F58C92AF4E66A42FA9AC1EC0

• Must calculate almost full-width – always 

• Carry out wide comparison to find rounding point

• Divide by 10x to shift – with accurate remainder 
(or equivalent operation: two multiplies plus subtract 
and correct)
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Rounding to 16 digits – binary

462D53C8ABAC0 × 173F04069C0CB1

65F58C92AF4E66A42FA9AC1EC0

• Must calculate almost full-width – always 

• Carry out wide comparison to find rounding point

• Divide by 10x to shift – with accurate remainder 

• Compare remainder with 10x/2  (50000….)
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Rounding to 16 digits – binary

462D53C8ABAC0 × 173F04069C0CB1

65F58C92AF4E66A42FA9AC1EC0

• Must calculate almost full-width – always 

• Carry out wide comparison to find rounding point

• Divide by 10x to shift – with accurate remainder 

• Compare remainder with 10x/2  

• If rounding up, another 16-digit compare is needed to 
detect any carry (the all 9s case)
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Rounded addition

• A simple, common addition such as 
1.234567890123456 + 23.45678901234567 
requires (with a binary significand):
– a multiply (or two shifts and and add) to align
– at least two compares, two multiplies, and a

subtract to round

• With BCD-based addition, the shifting and 
inspections are simple
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Summary

• Binary significands only have a useful 
advantage for unrounded multiplication 

• They are bad for other decimal operations, 
conversions, and general calculations 
(where most results need rounding)

• They are not suitable for a general-purpose 
encoding
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BID format-specific problems 
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Out-of-range significands

• Binary significands are not naturally 
bounded to decimal digits; e.g., for BID-32, 
the integer significand can be as large as 
10485759; maximum allowed is 9999999

• Operands must be compared against 
Smax before use – an almost full-width 
comparison – then cleared if too large
– slows either software or hardware
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BID-128 complexity

• BID-34 has values up to
9999999999999999999999999999999999
(== 0x1ED09BEAD87C0378D8E63FFFFFFFF)
yet is still defined to have two forms of exponent:

… even though valid significands fit in 113 bits

exponent

exponent

s

s  11

…
…
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‘Moving’ exponent fields

• Depending on the most significant bit of 
the significand, the exponent in a format 
either immediately follows the sign or is 
shifted two bits

• Exponent difference calculation is on the 
critical path for addition

exponent

exponent

s

s  11

…
…
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Simple exponent difference

Exponent A Exponent B

Calculate A–B Calculate B–A

2-way Select
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‘Moving-exponent’ difference

Exponent A

A–B A–B’ A’–B A’–B’ B–A B–A’ B’–A B’–A’ 

8-way Select

Exponent B’Exponent BExponent A’



(Benchmark conditions)

• Hardware:  Shuttle X, 3 GHz Pentium 4, 
1GB RAM, 120 GB HD

• OS:  Windows XP SP 2

• Decimal package:  decNumber v. 3.25  
– (also BID format decimal64)

• Compiler:  GCC version 3.2 (MinGW 20020817-1)
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Criteria for hardware decimals

• <1% cycle counts no need for any
improvement

• <10% cycle counts optimized software
library is fine

• 10-30% cycle counts borderline for 10x
better hardware

• >30% cycle countss borderline for >4x
hardware support

(Intel, 3/2005)
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‘Telco’ results (on Itanium)

• decNumber: 83% Telco as-is

• Optimized: 77%  Fast Telco + DPD
57% Fast Telco in BID
45% Fast Telco 

(from BID paper, June 17)
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