
Binary-Integer Decimal?

IEEE 754 – 14 July 2005

Eric Schwarz
Mike Cowlishaw
Mark Erle

2

Overview

• Why we didn’t propose binary-integer
decimal formats
– prior experience and measurements
– as explained in Arith15 paper, in 2001

• Costs of conversions to software formats

• Critical operations

Copyright © IBM 2005. All rights reserved.

3

The decimal model

• 754r: a significand ‘…is a string of digits…’

• 754r decimals make it possible to have
languages with a single numeric type (for
both integers and floating-point)
– there is more than arithmetic to be done

• We must “design computers for the way
people are rather than hope that people will
adapt to computers” WMK 6/2005

4

BigInteger (binary) significands

• BigInteger significands are good for multiply

• For other operations they have no
advantage, and often have very significant
disadvantages, as shown by plentiful
existing experience
– that’s why decNumber has chunks base 10n

• BigIntegers make simple things hard …

5

BigInteger significand problems

• Counting digits needs full-width comparison
• Aligning an operand, shifting, or rounding all

require multiplications (or a division)
• Conversions (string, BCD, Oracle ...)

need multiple multiplications (or divides)

• Unexpected performance characteristics
lead programmers to choose the wrong
algorithms; we should help programmers,
not confuse them

6

Java BigDecimal (1996)

• Based on BigInteger, as BigInteger is a
highly-tuned class; the assumption was
that this would lead to a fast BigDecimal

• Experience:
– good performance for simple multiply
– very poor rounding and conversions
– continuing customer complaints

7

BigDecimal, using BigInteger

0

0.5

1

1.5

2

2.5

m
ic

ro
se

co
nd

s

BD from
String

BD to
String

Add
X=X+1

Quantize Simple
Multiply

Rounded
Multiply

(9-digit operands, Java 1.5 BD on JVM 1.4, WinXP, P4 3GHz.)

8

BigDecimal, using base-10

• Byte-per-digit implementation
– prototype for Java 5 decimal enhancements
– open source (1999, google: decimalj)

– not performance-tuned
– slow multiply (n 2 effect)

… even so, significantly faster than
BigInteger-BigDecimal on SPECjbb2005

9

BigDecimal, using base-10

0

0.5

1

1.5

2

2.5

3

m
ic

ro
se

co
nd

s

BD from
String

BD to
String

Add
X=X+1

Quantize Simple
Multiply

Rounded
Multiply

(9-digit operands, IBM decimalj BD on JVM 1.4, WinXP, P4 3GHz.)

10

BigDecimal comparison

0

0.5

1

1.5

2

2.5

3

m
ic

ro
se

co
nd

s

BD from
String

BD to
String

Add
X=X+1

Quantize Simple
Multiply

Rounded
Multiply

BigInteger digits

11

Itanium-optimized (binary significand)

0

10

20

30

40

50

60

70

cy
cl

es

from
BCD

to BCD Add Quantize Simple
Multiply

Rounded
Multiply

?

<

(est)

(Intel figures except rounded multiply, from presentations to 754r committee, 3/2005.)

12

Another BigInt implementation

• C# decimal has a binary significand
– implemented in C
– fixed-size, 128-bit, format
– significand is 3-element int32 array
– rounds at binary boundary (96 bits)
– similar characteristics to BigInteger-based

Java BigDecimal

13

C# decimal – using int array

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

m
ic

ro
se

co
nd

s

Num
from

String

Num to
String

Add
X=X+1

Quantize Simple
Multiply

Rounded
Multiply

(est)

(16-digit operands, .Net 1.1.4322, WinXP, P4 3GHz.)

14

Chunking with a 10n base

• Good performance on decimal-specific
operations and also good performance on
arithmetic – tuneable by changing n

• Performance characteristics match
programmer expectations (human-friendly)

• n=4 is optimal for 32-bit machines; n=3 is
almost as good and maps to declets

15

decNumber – a C package

• Generic, fully dynamic (p, emax, rounding,
etc.), precision up to 109 digits

• Licensed since 2001, now Open Source
and commercial product (754r formats since 2/2003)

• Performance-tuned for Intel Pentium

• Chunk size selectable (1–9) at compile-time

16

Chunking with a 103 base

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

m
ic

ro
se

co
nd

s

Num
from

String

Num to
String

Add
X=X+1

Quantize Simple
Multiply

Rounded
Multiply

(16-digit operands, decNumber 3.25, WinXP, P4 3GHz.)

17

Decimal chunking vs. 96-bit integer

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

m
ic

ro
se

co
nd

s

Num
from

String

Num to
String

Add
X=X+1

Quantize Simple
Multiply

Rounded
Multiply

decNumber n=3 C#

18

Chunking with a 10n base

• Current code uses binary chunks; a mistake
– slows conversions and rounding significantly

• Better would be to use n=3 or n=6 encoded
as BCD (conversions and rounding then as good as n=1)

• Either is better overall than big binary
integers, and is suitable for any architecture
(decNumber runs on cellphones upwards)

19

Decimal chunking vs. big integer

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

m
ic

ro
se

co
nd

s

Num
from

String

Num to
String

Add
X=X+1

Quantize Simple
Multiply

Rounded
Multiply

decNumber n=3 BCD n=3 C#

(Projected BCD figures)

20

Cost of conversions

21

Cost of conversions

• The benchmarks in BID-rationale are limited

• ‘Telco’ is a simplification of a traditional
commercial mix; it is neither a modern nor
a general workload
– exact, aligned, unrounded, arithmetic (+, ×)
– simplest (quantize) rounding (no digit counting)
– only one conversion, of few digits

22

Cost of conversions

• The comparison is based on arithmetic
algorithms “that are specially designed for
some particular class of architecture”

(BID Rationale June 17)

• “The fact that BID allows for short cuts is
a crucial factor in its outstanding
performance” (BID Rationale July 12)

– ‘Telco’ is extraordinary in that almost all
operations allow these short cuts

23

Cost of conversions

• Without the fast binary hardware support, or
with more general calculations, the reported
advantage disappears

• In any case, ‘Telco’ has no requirement to
convert to and from a format on every
operation
– software can, of course, use whatever internal

format is best for the platform

24

Cost of conversions

• Further, the study does not show the cost
of converting BigInteger (BID) format to
decimal formats

• As one example of that, we’ve written a
64-bit BID conversion module for
decNumber, so the conversion costs can be
measured separately from arithmetic
– not the worst case, as target is binary chunks

25

decNumber modules

decNumber
arithmetic
package

(human-friendly,
software-friendly
10n chunked
internal format)

decimal128

decimal64

decimal32

packed BCD

(open source)

26

decNumber modules

decNumber
arithmetic
package

(human-friendly,
software-friendly
10n chunked
internal format)

decimal128

decimal64

decimal32

packed BCD

BID 64-bit

27

16 digit conversions (n=3)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

From
decNumber

To
decNumber

m
ic

ro
se

co
nd

s

754r format
BID format

(16-digit operands, decNumber 3.25, DECDPUN=3, WinXP, P4 3GHz.)

28

‘Telco’ variant (from May meeting)

• ‘Toy compiler’ variant – inner-loop variables
convert, only 3 temporaries allowed
– adds to base benchmark 14.5 conversions for

every 9 operations

• Measured base benchmark (‘optimized’),
and also ‘toy’ variant with conversions
to/from 754r decimal64 format and BID64
format (at various chunk sizes)

29

‘Telco toy’ timings

0

1

2

3

4

5

6

n=1
(digits)

n=3
(declets)

n=9

m
ic

ro
se

co
nd

s
pe

r i
te

m

optimized
754r format
BID format

(I/O not included,
is ~ 0.46µs in all
cases)

(decNumber 3.25, GCC, WinXP, P4 3GHz.)

30

Critical operations

31

Critical operations

• Many programming languages have only
one numeric type, often decimal

• This is the preferred model for future
applications programming (no need to
know about binary limits, no quiet overflow)
– binary int, long, etc. are not exposed
– traditional ‘integer’ operations use decimal

32

Shifting

• Used when assembling numbers
1 800 1234567

(1 << 10) + (areacode << 7) + localcode

… or for extracting parts of them

areacode = rem(tele >> 7, 1000)

33

Bit manipulation

• Multiple flags stored in a number (e.g., a
state machine, 754 exception flags, etc.)

A B C D E

34

Bit manipulation

• Multiple flags stored in a number (e.g., a
state machine, 754 exception flags, etc.)

A B C D E
1 0 1 0 1

written and stored as the (decimal)
number 10101

35

Bit manipulation

• Multiple flags stored in a number (e.g., a
state machine, 754 exception flags, etc.)

A B C D E
1 0 1 0 1

operations on 10101-style numbers:
– logical operations (and, or, xor, not)
– extract, clear, set, or test a flag

36

Storing and retrieving 10101

• Declets with DPD: each low order decimal
digit bit is unencoded (including the one in the
combination field). Not even a lookup needed:
…00100000010000001

and, or, xor, not, test, set, etc., are trivial in
hardware or software

• Binary significand: …0010011101110101

37

Counting digits

• Needed for overflow and underflow
detection, rounding, etc.

• With a decimal significand this is simple
– first non-zero digit

• With BigIntegers, first non-zero is just an
estimate; an almost full-width comparison
is also needed (after a 34-digit multiply,
this is very wide: 194 bits)

38

Overflow and Underflow

• n = count of significand digits

• Overflow occurs when:

result-exponent + n > Emax + 1

• Similar calculations are needed in several
other places, for subnormal and underflow
detection, etc.

39

Rounding

• Quantize is relatively simple (the exponent
change is easy to calculate)

• Rounding to n digits is harder
– must count total digits first

• When digits are directly accessible,
rounding is inspect-shift-add; BigIntegers
need at two multiplies, and more

40

Rounding to 16 digits – decimal

1234567890123456 × 6543210987654321

8078038183661009782044541853376

41

Rounding to 16 digits – decimal

1234567890123456 × 6543210987654321

8078038183661009782044541853376

Count 16 digits

42

Rounding to 16 digits – decimal

1234567890123456 × 6543210987654321

8078038183661009782044541853376

Count 16 digits Inspect next digit
(and zero-detect
the others in 10%
of cases)

43

Rounding to 16 digits – decimal

1234567890123456 × 6543210987654321

8078038183661009782044541853376

Count 16 digits These digits do not
have to be stored once
calculated, just note if
all zero; this can save
almost half the buffer
or register width

44

Rounding to 16 digits – decimal

1234567890123456 × 6543210987654321

8078038183661009782044541853376

Count 16 digits These digits do not
have to be stored
once calculated, just
note if all zero

Round up may cause a carry (all-9s case).
This is trivial to detect in decimal.

45

Rounding to 16 digits – binary

462D53C8ABAC0 × 173F04069C0CB1

65F58C92AF4E66A42FA9AC1EC0

Count 16 digits?

46

Rounding to 16 digits – binary

462D53C8ABAC0 × 173F04069C0CB1

65F58C92AF4E66A42FA9AC1EC0

• Must calculate all but 16 bits (almost full-width) – always

• Then (after leading-1 detect) carry out same-width
comparison to find rounding point (compare against
1000000… etc.)

47

Rounding to 16 digits – binary

462D53C8ABAC0 × 173F04069C0CB1

65F58C92AF4E66A42FA9AC1EC0

• Must calculate almost full-width – always

• Carry out wide comparison to find rounding point

• Divide by 10x to shift – with accurate remainder
(or equivalent operation: two multiplies plus subtract
and correct)

48

Rounding to 16 digits – binary

462D53C8ABAC0 × 173F04069C0CB1

65F58C92AF4E66A42FA9AC1EC0

• Must calculate almost full-width – always

• Carry out wide comparison to find rounding point

• Divide by 10x to shift – with accurate remainder

• Compare remainder with 10x/2 (50000….)

49

Rounding to 16 digits – binary

462D53C8ABAC0 × 173F04069C0CB1

65F58C92AF4E66A42FA9AC1EC0

• Must calculate almost full-width – always

• Carry out wide comparison to find rounding point

• Divide by 10x to shift – with accurate remainder

• Compare remainder with 10x/2

• If rounding up, another 16-digit compare is needed to
detect any carry (the all 9s case)

50

Rounded addition

• A simple, common addition such as
1.234567890123456 + 23.45678901234567
requires (with a binary significand):
– a multiply (or two shifts and and add) to align
– at least two compares, two multiplies, and a

subtract to round

• With BCD-based addition, the shifting and
inspections are simple

51

Summary

• Binary significands only have a useful
advantage for unrounded multiplication

• They are bad for other decimal operations,
conversions, and general calculations
(where most results need rounding)

• They are not suitable for a general-purpose
encoding

52

53

BID format-specific problems

54

Out-of-range significands

• Binary significands are not naturally
bounded to decimal digits; e.g., for BID-32,
the integer significand can be as large as
10485759; maximum allowed is 9999999

• Operands must be compared against
Smax before use – an almost full-width
comparison – then cleared if too large
– slows either software or hardware

55

BID-128 complexity

• BID-34 has values up to
9999999999999999999999999999999999
(== 0x1ED09BEAD87C0378D8E63FFFFFFFF)
yet is still defined to have two forms of exponent:

… even though valid significands fit in 113 bits

exponent

exponent

s

s 11

…
…

56

‘Moving’ exponent fields

• Depending on the most significant bit of
the significand, the exponent in a format
either immediately follows the sign or is
shifted two bits

• Exponent difference calculation is on the
critical path for addition

exponent

exponent

s

s 11

…
…

57

Simple exponent difference

Exponent A Exponent B

Calculate A–B Calculate B–A

2-way Select

58

‘Moving-exponent’ difference

Exponent A

A–B A–B’ A’–B A’–B’ B–A B–A’ B’–A B’–A’

8-way Select

Exponent B’Exponent BExponent A’

(Benchmark conditions)

• Hardware: Shuttle X, 3 GHz Pentium 4,
1GB RAM, 120 GB HD

• OS: Windows XP SP 2

• Decimal package: decNumber v. 3.25
– (also BID format decimal64)

• Compiler: GCC version 3.2 (MinGW 20020817-1)

60

Criteria for hardware decimals

• <1% cycle counts no need for any
improvement

• <10% cycle counts optimized software
library is fine

• 10-30% cycle counts borderline for 10x
better hardware

• >30% cycle countss borderline for >4x
hardware support

(Intel, 3/2005)

61

‘Telco’ results (on Itanium)

• decNumber: 83% Telco as-is

• Optimized: 77% Fast Telco + DPD
57% Fast Telco in BID
45% Fast Telco

(from BID paper, June 17)

	Binary-Integer Decimal?���IEEE 754 – 14 July 2005
	Overview
	The decimal model
	BigInteger (binary) significands
	BigInteger significand problems
	Java BigDecimal (1996)
	BigDecimal, using BigInteger
	BigDecimal, using base-10
	BigDecimal, using base-10
	BigDecimal comparison
	Itanium-optimized (binary significand)
	Another BigInt implementation
	C# decimal – using int array
	Chunking with a 10n base
	decNumber – a C package
	Chunking with a 103 base
	Decimal chunking vs. 96-bit integer
	Chunking with a 10n base
	Decimal chunking vs. big integer
	Cost of conversions
	Cost of conversions
	Cost of conversions
	Cost of conversions
	Cost of conversions
	decNumber modules
	decNumber modules
	16 digit conversions (n=3)
	‘Telco’ variant (from May meeting)
	‘Telco toy’ timings
	Critical operations
	Critical operations
	Shifting
	Bit manipulation
	Bit manipulation
	Bit manipulation
	Storing and retrieving 10101
	Counting digits
	Overflow and Underflow
	Rounding
	Rounding to 16 digits – decimal
	Rounding to 16 digits – decimal
	Rounding to 16 digits – decimal
	Rounding to 16 digits – decimal
	Rounding to 16 digits – decimal
	Rounding to 16 digits – binary
	Rounding to 16 digits – binary
	Rounding to 16 digits – binary
	Rounding to 16 digits – binary
	Rounding to 16 digits – binary
	Rounded addition
	Summary
	BID format-specific problems
	Out-of-range significands
	BID-128 complexity
	‘Moving’ exponent fields
	Simple exponent difference
	‘Moving-exponent’ difference
	(Benchmark conditions)
	Criteria for hardware decimals
	‘Telco’ results (on Itanium)

